RocketMQ源码解析:手把手教老婆看懂consumer接收到的MessageExt

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: RocketMQ源码解析:手把手教老婆看懂consumer接收到的MessageExt

image.png

RocketMQ使用教程相关系列 目录


目录

源代码说明

MessageExt的源码解析

继承于Message,Message源码解析

喝点毒鸡汤


源代码说明

MessageExt位于此包下:

package org.apache.rocketmq.common.message;

MessageExt的源码解析

参数说明在代码里

public class MessageExt extends Message {
    private static final long serialVersionUID = 5720810158625748049L;
    //记录MessageQueue编号,消息在Topic下对应的MessageQueue中被拉取
    private int queueId;
    //记录消息在Broker存盘大小
    private int storeSize;
    //记录在ConsumeQueue中的偏移
    private long queueOffset;
    //记录一些系统标志的开关状态,MessageSysFlag中定义了系统标识
    private int sysFlag;
    //消息创建时间,在Producer发送消息时设置
    private long bornTimestamp;
    //记录发送该消息的producer地址
    private SocketAddress bornHost;
    //消息存储时间
    private long storeTimestamp;
    //记录存储该消息的Broker地址
    private SocketAddress storeHost;
    //消息Id
    private String msgId;
    //记录消息在Broker中存储偏移
    private long commitLogOffset;
    //消息内容CRC校验值
    private int bodyCRC;
    //消息重试消费次数
    private int reconsumeTimes;
    //这个参数没看懂,知道的大佬分享下
    private long preparedTransactionOffset;
//省略get set
    @Override
    public String toString() {
        return "MessageExt [queueId=" + queueId + ", storeSize=" + storeSize + ", queueOffset=" + queueOffset
            + ", sysFlag=" + sysFlag + ", bornTimestamp=" + bornTimestamp + ", bornHost=" + bornHost
            + ", storeTimestamp=" + storeTimestamp + ", storeHost=" + storeHost + ", msgId=" + msgId
            + ", commitLogOffset=" + commitLogOffset + ", bodyCRC=" + bodyCRC + ", reconsumeTimes="
            + reconsumeTimes + ", preparedTransactionOffset=" + preparedTransactionOffset
            + ", toString()=" + super.toString() + "]";
    }
}

继承于Message,Message源码解析

public class Message implements Serializable {
    private static final long serialVersionUID = 8445773977080406428L;
    //主题
    private String topic;
    //网络通信层标记
    private int flag;
    /**
     *MIN_OFFSET:最小偏移
     * MAX_OFFSET:最大偏移
     * CONSUME_START_TIME:消费拉取时间
     *UNIQ_KEY:
     * CLUSTER:集群
     * WAIT:
     * TAGS:消息标签
     *DELAY:延时级别
     **/
    private Map<String, String> properties;
    //Producer发送的实际消息内容,以字节数组(ASCII码)形式进行存储。Message消息有一定大小限制。
    private byte[] body;
    //事务消息相关的事务编号
    private String transactionId;
   //得到延时级别
    public int getDelayTimeLevel() {
        String t = this.getProperty(MessageConst.PROPERTY_DELAY_TIME_LEVEL);
        if (t != null) {
            return Integer.parseInt(t);
        }
        return 0;
    }
//设置延时级别
    public void setDelayTimeLevel(int level) {
        this.putProperty(MessageConst.PROPERTY_DELAY_TIME_LEVEL, String.valueOf(level));
    }
//省略 get set
    @Override
    public String toString() {
        return "Message{" +
            "topic='" + topic + '\'' +
            ", flag=" + flag +
            ", properties=" + properties +
            ", body=" + Arrays.toString(body) +
            ", transactionId='" + transactionId + '\'' +
            '}';
    }
}1.public class Message implements Serializable {
    private static final long serialVersionUID = 8445773977080406428L;
    //主题
    private String topic;
    //网络通信层标记
    private int flag;
    /**
     *MIN_OFFSET:最小偏移
     * MAX_OFFSET:最大偏移
     * CONSUME_START_TIME:消费拉取时间
     *UNIQ_KEY:
     * CLUSTER:集群
     * WAIT:
     * TAGS:消息标签
     *DELAY:延时级别
     **/
    private Map<String, String> properties;
    //Producer发送的实际消息内容,以字节数组(ASCII码)形式进行存储。Message消息有一定大小限制。
    private byte[] body;
    //事务消息相关的事务编号
    private String transactionId;
   //得到延时级别
    public int getDelayTimeLevel() {
        String t = this.getProperty(MessageConst.PROPERTY_DELAY_TIME_LEVEL);
        if (t != null) {
            return Integer.parseInt(t);
        }
        return 0;
    }
//设置延时级别
    public void setDelayTimeLevel(int level) {
        this.putProperty(MessageConst.PROPERTY_DELAY_TIME_LEVEL, String.valueOf(level));
    }
//省略 get set
    @Override
    public String toString() {
        return "Message{" +
            "topic='" + topic + '\'' +
            ", flag=" + flag +
            ", properties=" + properties +
            ", body=" + Arrays.toString(body) +
            ", transactionId='" + transactionId + '\'' +
            '}';
    }
}

喝点毒鸡汤

每天读点源码,进步一小步,成长一大步。

目录
相关文章
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
102 2
|
3月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
89 0
|
3月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
69 0
|
19天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
19天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
19天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
61 12
|
1月前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
20天前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
2月前
|
消息中间件 存储 Java
RocketMQ文件刷盘机制深度解析与Java模拟实现
【11月更文挑战第22天】在现代分布式系统中,消息队列(Message Queue, MQ)作为一种重要的中间件,扮演着连接不同服务、实现异步通信和消息解耦的关键角色。Apache RocketMQ作为一款高性能的分布式消息中间件,广泛应用于实时数据流处理、日志流处理等场景。为了保证消息的可靠性,RocketMQ引入了一种称为“刷盘”的机制,将消息从内存写入到磁盘中,确保消息持久化。本文将从底层原理、业务场景、概念、功能点等方面深入解析RocketMQ的文件刷盘机制,并使用Java模拟实现类似的功能。
47 3

推荐镜像

更多