【算法千题案例】每日LeetCode打卡——81.最长特殊序列 Ⅰ

简介: 📢前言🌲原题样例:最长特殊序列 Ⅰ🌻C#方法:排序遍历🌻Java 方法:简单解法💬总结

📢前言

🚀 算法题 🚀

🌲 每天打卡一道算法题,既是一个学习过程,又是一个分享的过程😜

🌲 提示:本专栏解题 编程语言一律使用 C# 和 Java 两种进行解题

🌲 要保持一个每天都在学习的状态,让我们一起努力成为算法大神吧🧐!

🌲 今天是力扣算法题持续打卡第81天🎈!

🚀 算法题 🚀

🌲原题样例:最长特殊序列 Ⅰ

给你两个字符串,请你从这两个字符串中找出最长的特殊序列。


「最长特殊序列」定义如下:该序列为某字符串独有的最长子序列(即不能是其他字符串的子序列)。


子序列 可以通过删去字符串中的某些字符实现,但不能改变剩余字符的相对顺序。空序列为所有字符串的子序列,任何字符串为其自身的子序列。


输入为两个字符串,输出最长特殊序列的长度。如果不存在,则返回 -1。

示例1:

输入: "aba", "cdc"
输出: 3
解释: 最长特殊序列可为 "aba" (或 "cdc"),两者均为自身的子序列且不是对方的子序列。

示例2:

输入:a = "aaa", b = "bbb"
输出:3

示例3:

输入:a = "aaa", b = "aaa"
输出:-1

提示:

  • 两个字符串长度均处于区间 [1 - 100] 。
  • 字符串中的字符仅含有 ‘a’~‘z’ 。


🌻C#方法:排序遍历

  • 判断字符串是否相等,相等说明特殊子序列不存在
  • 不等的话最长特殊子序列就是两字符串中最长的那个

代码:

public class Solution {
    public int FindLUSlength(string a, string b) {
        if(a.Equals(b)) {
            return -1;
        }
        else {
            return Math.Max(a.Length, b.Length);
        }
    }
}

执行结果

通过
执行用时:64 ms,在所有 C# 提交中击败了100.00%的用户
内存消耗:34.4 MB,在所有 C# 提交中击败了25.90%的用户

🌻Java 方法:简单解法

思路解析

image.png

直接使用Math.max返回字符串最长长度就是最终结果了~

代码:

public class Solution {
    public int findLUSlength(String a, String b) {
        if (a.equals(b))
            return -1;
        return Math.max(a.length(), b.length());
    }
}

执行结果

通过
执行用时:1 ms,在所有 Java  提交中击败了94.76%的用户
内存消耗:36.8 MB,在所有 Java 提交中击败了26.40%的用户

复杂度分析

时间复杂度:O( min(x,y) )。其中 x 和 y 是字符串 a 和 b 的长度。方法 equals 的时间复杂度为 min(x,y)。
空间复杂度:O(1)

总结

  • 今天是力扣算法题打卡的第八十一天!
  • 文章采用 C#Java 两种编程语言进行解题
  • 一些方法也是参考力扣大神写的,也是边学习边分享,再次感谢算法大佬们
  • 那今天的算法题分享到此结束啦,明天再见!


相关文章
|
8月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
4月前
|
存储 C++ 索引
最长连续序列(每天刷力扣hot100系列)
本题使用哈希表法求最长连续序列。利用unordered_set存储去重元素,遍历集合时仅当num-1不存在时才作为起点向后扩展,统计连续长度,时间复杂度O(n),空间复杂度O(n)。相比unordered_map更高效,因无需存储值。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
4月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
12月前
|
人工智能 编解码 算法
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
9061 71
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
|
8月前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
8月前
|
算法 数据安全/隐私保护
基于混沌序列和小波变换层次化编码的遥感图像加密算法matlab仿真
本项目实现了一种基于小波变换层次化编码的遥感图像加密算法,并通过MATLAB2022A进行仿真测试。算法对遥感图像进行小波变换后,利用Logistic混沌映射分别对LL、LH、HL和HH子带加密,完成图像的置乱与扩散处理。核心程序展示了图像灰度化、加密及直方图分析过程,最终验证加密图像的相关性、熵和解密后图像质量等性能指标。通过实验结果(附图展示),证明了该算法在图像安全性与可恢复性方面的有效性。
|
8月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
352 1

热门文章

最新文章