我用 PyTorch 复现了 LeNet-5 神经网络(MNIST 手写数据集篇)!

简介: 我用 PyTorch 复现了 LeNet-5 神经网络(MNIST 手写数据集篇)!

大家好,我是红色石头!


在上一篇文章:


这可能是神经网络 LeNet-5 最详细的解释了!


详细介绍了卷积神经网络 LeNet-5 的理论部分。今天我们将使用 Pytorch 来实现 LeNet-5 模型,并用它来解决 MNIST数据集的识别。


正文开始!


一、使用 LeNet-5 网络结构创建 MNIST 手写数字识别分类器


MNIST是一个非常有名的手写体数字识别数据集,训练样本:共60000个,其中55000个用于训练,另外5000个用于验证;测试样本:共10000个。MNIST数据集每张图片是单通道的,大小为28x28。


image.png


1.1 下载并加载数据,并做出一定的预先处理


由于 MNIST 数据集图片尺寸是 28x28 单通道的,而 LeNet-5 网络输入 Input 图片尺寸是 32x32,因此使用 transforms.Resize 将输入图片尺寸调整为 32x32。


首先导入 PyToch 的相关算法库:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import time
from matplotlib import pyplot as plt
pipline_train = transforms.Compose([
    #随机旋转图片
    transforms.RandomHorizontalFlip(),
    #将图片尺寸resize到32x32
    transforms.Resize((32,32)),
    #将图片转化为Tensor格式
    transforms.ToTensor(),
    #正则化(当模型出现过拟合的情况时,用来降低模型的复杂度)
    transforms.Normalize((0.1307,),(0.3081,))    
])
pipline_test = transforms.Compose([
    #将图片尺寸resize到32x32
    transforms.Resize((32,32)),
    transforms.ToTensor(),
    transforms.Normalize((0.1307,),(0.3081,))
])
#下载数据集
train_set = datasets.MNIST(root="./data", train=True, download=True, transform=pipline_train)
test_set = datasets.MNIST(root="./data", train=False, download=True, transform=pipline_test)
#加载数据集
trainloader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
testloader = torch.utils.data.DataLoader(test_set, batch_size=32, shuffle=False)


这里要解释一下 Pytorch MNIST 数据集标准化为什么是 transforms.Normalize((0.1307,), (0.3081,))?


标准化(Normalization)是神经网络对数据的一种经常性操作。标准化处理指的是:样本减去它的均值,再除以它的标准差,最终样本将呈现均值为 0 方差为 1 的数据分布。


神经网络模型偏爱标准化数据,原因是均值为0方差为1的数据在 sigmoid、tanh 经过激活函数后求导得到的导数很大,反之原始数据不仅分布不均(噪声大)而且数值通常都很大(本例中数值范围是 0~255),激活函数后求导得到的导数则接近与 0,这也被称为梯度消失。所以说,数据的标准化有利于加快神经网络的训练。


除此之外,还需要保持 train_set、val_set 和 test_set 标准化系数的一致性。标准化系数就是计算要用到的均值和标准差,在本例中是((0.1307,), (0.3081,)),均值是 0.1307,标准差是 0.3081,这些系数都是数据集提供方计算好的数据。不同数据集就有不同的标准化系数,例如([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])就是 ImageNet dataset 的标准化系数(RGB三个通道对应三组系数),当需要将 Imagenet 预训练的参数迁移到另一神经网络时,被迁移的神经网络就需要使用 Imagenet的系数,否则预训练不仅无法起到应有的作用甚至还会帮倒忙。


1.2 搭建 LeNet-5 神经网络结构,并定义前向传播的过程

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5) 
        self.relu = nn.ReLU()
        self.maxpool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.maxpool2 = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = x.view(-1, 16*5*5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        output = F.log_softmax(x, dim=1)
        return output


1.3 将定义好的网络结构搭载到 GPU/CPU,并定义优化器


#创建模型,部署gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = LeNet().to(device)
#定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)


1.4 定义训练过程


def train_runner(model, device, trainloader, optimizer, epoch):
    #训练模型, 启用 BatchNormalization 和 Dropout, 将BatchNormalization和Dropout置为True
    model.train()
    total = 0
    correct =0.0
    #enumerate迭代已加载的数据集,同时获取数据和数据下标
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        #把模型部署到device上
        inputs, labels = inputs.to(device), labels.to(device)
        #初始化梯度
        optimizer.zero_grad()
        #保存训练结果
        outputs = model(inputs)
        #计算损失和
        #多分类情况通常使用cross_entropy(交叉熵损失函数), 而对于二分类问题, 通常使用sigmod
        loss = F.cross_entropy(outputs, labels)
        #获取最大概率的预测结果
        #dim=1表示返回每一行的最大值对应的列下标
        predict = outputs.argmax(dim=1)
        total += labels.size(0)
        correct += (predict == labels).sum().item()
        #反向传播
        loss.backward()
        #更新参数
        optimizer.step()
        if i % 1000 == 0:
            #loss.item()表示当前loss的数值
            print("Train Epoch{} \t Loss: {:.6f}, accuracy: {:.6f}%".format(epoch, loss.item(), 100*(correct/total)))
            Loss.append(loss.item())
            Accuracy.append(correct/total)
    return loss.item(), correct/total


1.5 定义测试过程


def test_runner(model, device, testloader):
    #模型验证, 必须要写, 否则只要有输入数据, 即使不训练, 它也会改变权值
    #因为调用eval()将不启用 BatchNormalization 和 Dropout, BatchNormalization和Dropout置为False
    model.eval()
    #统计模型正确率, 设置初始值
    correct = 0.0
    test_loss = 0.0
    total = 0
    #torch.no_grad将不会计算梯度, 也不会进行反向传播
    with torch.no_grad():
        for data, label in testloader:
            data, label = data.to(device), label.to(device)
            output = model(data)
            test_loss += F.cross_entropy(output, label).item()
            predict = output.argmax(dim=1)
            #计算正确数量
            total += label.size(0)
            correct += (predict == label).sum().item()
        #计算损失值
        print("test_avarage_loss: {:.6f}, accuracy: {:.6f}%".format(test_loss/total, 100*(correct/total)))


1.6 运行


LeNet-5 网络模型定义好,训练函数、验证函数也定义好了,就可以直接使用 MNIST 数据集进行训练了。


# 调用
epoch = 5
Loss = []
Accuracy = []
for epoch in range(1, epoch+1):
    print("start_time",time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
    loss, acc = train_runner(model, device, trainloader, optimizer, epoch)
    Loss.append(loss)
    Accuracy.append(acc)
    test_runner(model, device, testloader)
    print("end_time: ",time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())),'\n')
print('Finished Training')
plt.subplot(2,1,1)
plt.plot(Loss)
plt.title('Loss')
plt.show()
plt.subplot(2,1,2)
plt.plot(Accuracy)
plt.title('Accuracy')
plt.show()


image.pngimage.png


最终在 10000 张测试样本上,average_loss降到了 0.00228,accuracy 达到了 97.72%。可以说 LeNet-5 的效果非常好!


1.7 保存模型



print(model)
torch.save(model, './models/model-mnist.pth') #保存模型


LeNet-5 的模型会 print 出来,并将模型模型命令为 model-mnist.pth 保存在固定目录下。


LeNet(
 (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
 (relu): ReLU()
 (maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
 (maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (fc1): Linear(in_features=400, out_features=120, bias=True)
 (fc2): Linear(in_features=120, out_features=84, bias=True)
 (fc3): Linear(in_features=84, out_features=10, bias=True)
)


1.8 手写图片的测试


下面,我们将利用刚刚训练的 LeNet-5 模型进行手写数字图片的测试。


import cv2
if __name__ == '__main__':
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = torch.load('./models/model-mnist.pth') #加载模型
    model = model.to(device)
    model.eval()    #把模型转为test模式
    #读取要预测的图片
    img = cv2.imread("./images/test_mnist.jpg")
    img=cv2.resize(img,dsize=(32,32),interpolation=cv2.INTER_NEAREST)
    plt.imshow(img,cmap="gray") # 显示图片
    plt.axis('off') # 不显示坐标轴
    plt.show()
    # 导入图片,图片扩展后为[1,1,32,32]
    trans = transforms.Compose(
        [
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#图片转为灰度图,因为mnist数据集都是灰度图
    img = trans(img)
    img = img.to(device)
    img = img.unsqueeze(0)  #图片扩展多一维,因为输入到保存的模型中是4维的[batch_size,通道,长,宽],而普通图片只有三维,[通道,长,宽]
    # 预测 
    output = model(img)
    prob = F.softmax(output,dim=1) #prob是10个分类的概率
    print("概率:",prob)
    value, predicted = torch.max(output.data, 1)
    predict = output.argmax(dim=1)
    print("预测类别:",predict.item())


image.png


输出:

概率:tensor([[2.0888e-07, 1.1599e-07, 6.1852e-05, 1.5797e-04, 1.4975e-09, 9.9977e-01,
       1.9271e-06, 3.1589e-06, 1.2186e-07, 4.3405e-07]],
     grad_fn=<SoftmaxBackward>)

预测类别:5


模型预测结果正确!


以上就是 PyTorch 构建 LeNet-5 卷积神经网络并用它来识别 MNIST 数据集的例子。全文的代码都是可以顺利运行的,建议大家自己跑一边。


所有完整的代码我都放在 GitHub 上,GitHub地址为:


https://github.com/RedstoneWill/ObjectDetectionLearner/tree/main/LeNet-5


也可以点击阅读原文进入~


相关文章
|
3月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
906 0
|
7月前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
4月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
5月前
|
机器学习/深度学习 API 算法框架/工具
【Tensorflow+keras】Keras API三种搭建神经网络的方式及以mnist举例实现
使用Keras API构建神经网络的三种方法:使用Sequential模型、使用函数式API以及通过继承Model类来自定义模型,并提供了基于MNIST数据集的示例代码。
67 12
|
5月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例
如何使用TensorFlow和Keras实现条件生成对抗网络(CGAN)并以MNIST和Fashion MNIST数据集为例进行演示。
64 3
|
5月前
|
机器学习/深度学习 安全 网络协议
网络安全公开数据集Maple-IDS,恶意流量检测数据集开放使用!
【8月更文挑战第29天】Maple-IDS 是东北林业大学网络安全实验室发布的网络入侵检测评估数据集,旨在提升异常基础入侵检测和预防系统的性能与可靠性。该数据集包含多种最新攻击类型,如 DDoS 和 N-day 漏洞,覆盖多种服务和网络行为,兼容 CIC-IDS 格式,便于直接使用或生成 csv 文件,适用于多种现代协议。
256 0
|
7月前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
176 0
|
7月前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
120 0
|
7月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用