⚡机器学习⚡中的优化器(Optimizers)方法

简介: ⚡机器学习⚡中的优化器(Optimizers)方法

⚡终于!!!

⚡终于又有时间学习Deep Learning了⚡!

30天ML计划,一起加油!!!

https://blog.csdn.net/weixin_44333889/category_11271153.html《专栏》


在训练NN的时候,有哪些Optimizers可以优化更快的找到global Minima?


下面我们来看下有哪些方法可以优化求解。


Background

在训练神经网路的时候,最开始我们是用的Gradient Descent(梯度下降法,GD)来求解,但是会出现很多问题,面临大量的数据的时候,GD会出现local Minima,而且求解速度会下降。


关于GD+Momentum,可以看这个介绍简单易懂。


整个技术的发展路线如下:


SGD 【Cauchy,1847】

SGD with momentum 【Rumelhart,et al.,Nature’1986】

上面两个是远古时期的优化求解方法,其实放到现在来看,依旧还是很有效果。


如下面这些就是SGDM训练出来的,


image.png

image.png

目前比较常用的是下面三个Optimizers:


Adagrad 【Duchi,et al. JMLR’11 2011】

RMSProp 【Hinton,et al. Lecture slides, 2013】

Adam 【kingma,et al. ICLR’15 2014】

借用一下李老师(台大,李宏毅)的PPT。


SGD,stochastic gradient descent。也就是最普通的方法,如下图所示

image.png

image.png

image.png

Adagrad

Adagrad(自适应梯度算法)。其基本思想是,对每个参数theta自适应的调节它的学习率,自适应的方法就是对每个参数乘以不同的系数,并且这个系数是通过之前累积的梯度大小的平方和决定的,也就是说,对于之前更新很多的,相对就可以慢一点,而对那些没怎么更新过的,就可以给一个大一些的学习率。


Adagrad算法:

image.png

以上就为Adagrad算法的内容。

Python实现代码:

import numpy as np
class Adagrad:
    def __init__(self, learning_rate=0.01):
        self.learning_rate = learning_rate    # 学习率设置为0.01
        self.fg = None  
        self.delta = 1e-07                   # 设置1e-07微小值避免分母为0
    def update(self, params, grads):     # 更新操作
        if self.fg is None:
            self.fg = {}               # 设为空列表
            for key, value in params.items():
                self.fg[key] = np.zeros_like(value)   # 构造一个矩阵
        for key in params.keys():        # 循环迭代
            self.fg[key] += grads[key] * grads[key]     
            params[key] -= self.learning_rate * grads[key] / (np.sqrt(self.fg[key]) + self.delta) 

RMSProp

RMSProp算法实则为对Adagrad的一个改进,也就是把Adagrad对历史梯度加和变成了对历史梯度求均值,再利用这个均值代替Adagrad累加的梯度和对当前梯度进行加权,并用来update更新。


用均值代替求和是为了解决Adagrad的学习率逐渐消失的问题。


image.png

image.png

图片源自网络)

有位大佬的解释更加清晰,可跳转此处

def RMSprop(x, y, step=0.01, iter_count=500, batch_size=4, alpha=0.9, beta=0.9):
    length, features = x.shape
    data = np.column_stack((x, np.ones((length, 1))))
    w = np.zeros((features + 1, 1))
    Sdw, v, eta = 0, 0, 10e-7
    start, end = 0, batch_size
    # 开始迭代
    for i in range(iter_count):
        # 计算临时更新参数
        w_temp = w - step * v
        # 计算梯度
        dw = np.sum((np.dot(data[start:end], w_temp) - y[start:end]) * data[start:end], axis=0).reshape((features + 1, 1)) / length        
        # 计算累积梯度平方
        Sdw = beta * Sdw + (1 - beta) * np.dot(dw.T, dw)
        # 计算速度更新量、
        v = alpha * v + (1 - alpha) * dw
        # 更新参数
        w = w - (step / np.sqrt(eta + Sdw)) * v
        start = (start + batch_size) % length
        if start > length:
            start -= length
        end = (end + batch_size) % length
        if end > length:
            end -= length
    return w

Adam

最后讲讲Adam(自适应矩估计 Adaptive moment estimation),因为目前是比较强的,下面这些都是由Adam训练出来的,

image.png

看一下Adam和SGDM的准确率对比(源自论文)

image.png

由于Adam的提出的地方有一些突兀,并非在论文或会议,能找到的最原始的出处也只有下面了,看一下他的更新方式吧,相当于一个优化参数的更新模块。

image.png

image.png

Adam 的Python代码有大佬已经开源了:


https://github.com/yzy1996/Python-Code/blob/master/Algorithm/Optimization-Algorithm/Adam.py

https://github.com/sagarvegad/Adam-optimizer/blob/master/Adam.py

如果不想转链接,这里直接附上了:

import math
alpha = 0.01
beta_1 = 0.9
beta_2 = 0.999            # 初始化参数的值
epsilon = 1e-8
def func(x):
  return x*x -4*x + 4
def grad_func(x):         # 计算梯度
  return 2*x - 4
theta_0 = 0           # 初始化向量
m_t = 0 
v_t = 0 
t = 0
while (1):          # 循环直到它收敛
  t+=1
  g_t = grad_func(theta_0)    # 计算随机函数的梯度
  m_t = beta_1*m_t + (1-beta_1)*g_t # 更新梯度的移动平均线
  v_t = beta_2*v_t + (1-beta_2)*(g_t*g_t) # 更新平方梯度的移动平均线
  m_cap = m_t/(1-(beta_1**t))   # 计算偏差校正后的估计
  v_cap = v_t/(1-(beta_2**t))   # 计算偏差校正后的估计
  theta_0_prev = theta_0                
  theta_0 = theta_0 - (alpha*m_cap)/(math.sqrt(v_cap)+epsilon)  # 更新参数
  if(theta_0 == theta_0_prev):    # 检查是否收敛
    break

总而言之,这个优化器目前是处于机器学习中最强的优化地位。

其实,对于不同的数据集或许会有所偏差,在不同的优化时间段,前中后期,各个优化器的准确率会有所波动,如下(源自论文)准确率测试图:

image.png

所以,不经感叹道,搞优化求解,真的是一门玄学啊,老的方法不一定在现在没有用,新的方法不一定适用于所以场景,找到最适合的方法才是真的有效的。相信在科技如此发达的现在及以后,会有更多的优化求解算法,推进人类进步,而不仅仅是从硬件上提升运算速度。

相关文章
|
18天前
|
数据采集 机器学习/深度学习 算法
机器学习方法之决策树算法
决策树算法是一种常用的机器学习方法,可以应用于分类和回归任务。通过递归地将数据集划分为更小的子集,从而形成一棵树状的结构模型。每个内部节点代表一个特征的判断,每个分支代表这个特征的某个取值或范围,每个叶节点则表示预测结果。
36 1
|
1月前
|
机器学习/深度学习 分布式计算 算法
联邦学习是保障数据隐私的分布式机器学习方法
【6月更文挑战第13天】联邦学习是保障数据隐私的分布式机器学习方法,它在不暴露数据的情况下,通过在各设备上本地训练并由中心服务器协调,实现全局模型构建。联邦学习的优势在于保护隐私、提高训练效率和增强模型泛化。已应用于医疗、金融和物联网等领域。未来趋势包括更高效的数据隐私保护、提升可解释性和可靠性,以及与其他技术融合,有望在更多场景发挥潜力,推动机器学习发展。
30 4
|
5天前
|
测试技术
8B尺寸达到GPT-4级性能!北大等提出医疗专家模型训练方法
【7月更文挑战第8天】北京大学等研究者提出的新方法缓解了大模型如Llama-3-8B在持续预训练时的“稳定性差距”,通过多轮次训练、高质量子语料库选择和数据混合策略,提升性能和效率。在医疗领域,他们将OpenLlama-3B性能提升至40.7%,并创建的Llama-3-Physician模型达到GPT-4级别。尽管取得突破,该方法在其他模型和领域的适用性仍需探索,且持续预训练仍资源密集。[链接: https://arxiv.org/abs/2406.14833]
42 25
|
25天前
|
机器学习/深度学习 人工智能 算法
【机器学习】RLHF:在线方法与离线算法在大模型语言模型校准中的博弈
【机器学习】RLHF:在线方法与离线算法在大模型语言模型校准中的博弈
242 6
|
1天前
|
机器学习/深度学习 数据采集 存储
在机器学习和数据科学中,数据预处理是一个至关重要的步骤。数据规范化(或称为特征缩放)是预处理的一种常见技术,它可以帮助我们改进模型的性能。`sklearn.preprocessing`模块提供了多种数据规范化的方法,其中`StandardScaler`和`MinMaxScaler`是最常用的两种。
在机器学习和数据科学中,数据预处理是一个至关重要的步骤。数据规范化(或称为特征缩放)是预处理的一种常见技术,它可以帮助我们改进模型的性能。`sklearn.preprocessing`模块提供了多种数据规范化的方法,其中`StandardScaler`和`MinMaxScaler`是最常用的两种。
6 0
|
27天前
|
机器学习/深度学习 算法 搜索推荐
机器学习方法之强化学习
强化学习是一种机器学习方法,旨在通过与环境的交互来学习如何做出决策,以最大化累积的奖励。
35 2
|
27天前
|
机器学习/深度学习 搜索推荐
解决冷启动问题的机器学习方法和一个简化的代码示例
解决冷启动问题的机器学习方法和一个简化的代码示例
|
27天前
|
机器学习/深度学习 数据采集 运维
无监督学习是机器学习的一种重要方法
无监督学习是机器学习的一种重要方法
|
27天前
|
机器学习/深度学习 算法 TensorFlow
强化学习是一种通过与环境交互来学习最优行为策略的机器学习方法。
强化学习是一种通过与环境交互来学习最优行为策略的机器学习方法。
|
1月前
|
机器学习/深度学习 算法
机器学习方法分类
【6月更文挑战第14天】机器学习方法分类。
30 2