Elman神经网络原理

简介: Elman神经网络原理

Elman神经网络

近期开题,阅读到了一篇文章关于故障诊断的,其中用到了Elman神经网络,具体是结合EMD、PCA-SOM的Elman的性能评估/预测故障诊断,对Elman神经网络有点陌生,网上资源也讲的特别杂,来做个汇总Introduction吧!


介绍

Elman神经网络 是 J. L. Elman于1990年首先针对语音处理问题而提出来的,是一种典型的局部回归网络( global feed forward local recurrent)。Elman网络可以看作是一个具有局部记忆单元和局部反馈连接的递归神经网络。


Elman网络具有与多层前向网络相似的多层结构。


它的主要结构是前馈连接, 包括输入层、 隐含层、 输出层, 其连接权可以进行学习修正;反馈连接由一组“结构 ” 单元构成,用来记忆前一时刻的输出值, 其连接权值是固定的。在这种网络中, 除了普通的隐含层外, 还有一个特别的隐含层,称为关联层 (或联系单元层 ) ;该层从隐含层接收反馈信号, 每一个隐含层节点都有一个与之对应的关联层节点连接。关联层的作用是通过联接记忆将上一个时刻的隐层状态连同当前时刻的网络输入一起作为隐层的输入, 相当于状态反馈。隐层的传递函数仍为某种非线性函数, 一般为 Sigmoid函数, 输出层为线性函数, 关联层也为线性函数。


----词条来自于百度百科


Elman组成

Elman神经网络是一种典型的动态神经网络,通常有四层:输入层、中间层(隐含层)、 承接层和输出层。


输入层、隐含层和输出层的连接类似于前馈网络。


输入层的单元只传输信号,输出层的单元具有线性加权的功能。


隐层细胞的传递函数可以是线性函数,也可以是非线性函数。


承接层又称为上下文层或状态层,用于记忆隐层的前一个时间步长输出,因此可以看作是一步时间延迟算子。


Elman网络结构


image.png

image.png

带反馈的的BP网络

行程迟滞具有短期记忆功能


(Figure来自于网络)


Elman神经网络的特点是通过受体层的延迟和存储,隐层的输出与隐层的输入本身相连。这种自连接对其历史状态的数据非常敏感,内部反馈网络也增加了动态信息处理的能力,从而达到动态建模的目的。


选择用历史训练的Elman神经网络同步预测,数据流程图如下图所示。

image.png

  • Elman网络学习算法

image.png

用BP算法进行权值修正,指标函数为误差平方和

image.png

Matlab实例代码

本实例是引用的《Matlab神经网络30个案例分析》中的一个,觉得很不错,就更新一下下!~

内容较为古老,直接附上了,请多担待。

电力负荷预测概述

image.png

模型建立

image.png

image.png

电力系统负荷数据

image.png

具体数据及其源代码在我的GitHub上可下载:

https://github.com/YurBro/Project-Code/tree/main/ElmanNN

Matlab Code:

%%  基于Elman神经网络的电力负荷预测模型研究
% 
% 
% <html>
% <table border="0" width="600px" id="table1">  <tr>    <td><b><font size="2">该案例作者申明:</font></b></td>  </tr> <tr>    <td><span class="comment"><font size="2">1:本人长期驻扎在此<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html"><font color="#0000FF">板块</font></a>里,对<a target="_blank" href="http://www.ilovematlab.cn/thread-48362-1-1.html"><font color="#0000FF">该案例</font></a>提问,做到有问必答。</font></span></td></tr><tr>  <td><span class="comment"><font size="2">2:此案例有配套的教学视频,配套的完整可运行Matlab程序。</font></span></td> </tr> <tr>    <td><span class="comment"><font size="2">   3:以下内容为该案例的部分内容(约占该案例完整内容的1/10)。</font></span></td> </tr>   <tr>    <td><span class="comment"><font size="2">   4:此案例为原创案例,转载请注明出处(<a target="_blank" href="http://www.ilovematlab.cn/">Matlab中文论坛</a>,<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html">《Matlab神经网络30个案例分析》</a>)。</font></span></td>  </tr>   <tr>    <td><span class="comment"><font size="2">   5:若此案例碰巧与您的研究有关联,我们欢迎您提意见,要求等,我们考虑后可以加在案例里。</font></span></td>  </tr>   <tr>    <td><span class="comment"><font size="2">   6:您看到的以下内容为初稿,书籍的实际内容可能有少许出入,以书籍实际发行内容为准。</font></span></td>  </tr><tr>   <td><span class="comment"><font size="2">   7:此书其他常见问题、预定方式等,<a target="_blank" href="http://www.ilovematlab.cn/thread-47939-1-1.html">请点击这里</a>。</font></span></td>  </tr></table>
% </html>
% 
%% 清空环境变量
clc;
clear all
close all
nntwarn off;
%% 数据载入
load data;
a=data;
%% 选取训练数据和测试数据
for i=1:6
    p(i,:)=[a(i,:),a(i+1,:),a(i+2,:)];
end
% 训练数据输入
p_train=p(1:5,:);
% 训练数据输出
t_train=a(4:8,:);
% 测试数据输入
p_test=p(6,:);
% 测试数据输出
t_test=a(9,:);
% 为适应网络结构 做转置
p_train=p_train';
t_train=t_train';
p_test=p_test';
%% 网络的建立和训练
% 利用循环,设置不同的隐藏层神经元个数
nn=[7 11 14 18];
for i=1:4
    threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];
    % 建立Elman神经网络 隐藏层为nn(i)个神经元
    net=newelm(threshold,[nn(i),3],{'tansig','purelin'});
    % 设置网络训练参数
    net.trainparam.epochs=1000;
    net.trainparam.show=20;
    % 初始化网络
    net=init(net);
    % Elman网络训练
    net=train(net,p_train,t_train);
    % 预测数据
    y=sim(net,p_test);
    % 计算误差
    error(i,:)=y'-t_test;
end
%% 通过作图 观察不同隐藏层神经元个数时,网络的预测效果
plot(1:1:3,error(1,:),'-ro','linewidth',2);
hold on;
plot(1:1:3,error(2,:),'b:x','linewidth',2);
hold on;
plot(1:1:3,error(3,:),'k-.s','linewidth',2);
hold on;
plot(1:1:3,error(4,:),'c--d','linewidth',2);
title('Elman预测误差图')
set(gca,'Xtick',[1:3])
legend('7','11','14','18','location','best')
xlabel('时间点')
ylabel('误差')
hold off;
web browser http://www.ilovematlab.cn/viewthread.php?tid=63640
%%
%
% <html>
% <table align="center" > <tr>    <td align="center"><font size="2">版权所有:</font><a
% href="http://www.ilovematlab.cn/">Matlab中文论坛</a>&nbsp;&nbsp; <script
% src="http://s3.cnzz.com/stat.php?id=971931&web_id=971931&show=pic" language="JavaScript" ></script>&nbsp;</td>  </tr></table>
% </html>
%


相关文章
|
5月前
|
机器学习/深度学习 存储 算法
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
反向传播算法虽是深度学习基石,但面临内存消耗大和并行扩展受限的问题。近期,牛津大学等机构提出NoProp方法,通过扩散模型概念,将训练重塑为分层去噪任务,无需全局前向或反向传播。NoProp包含三种变体(DT、CT、FM),具备低内存占用与高效训练优势,在CIFAR-10等数据集上达到与传统方法相当的性能。其层间解耦特性支持分布式并行训练,为无梯度深度学习提供了新方向。
203 1
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
|
4月前
|
监控 应用服务中间件 Linux
掌握并发模型:深度揭露网络IO复用并发模型的原理。
总结,网络 I/O 复用并发模型通过实现非阻塞 I/O、引入 I/O 复用技术如 select、poll 和 epoll,以及采用 Reactor 模式等技巧,为多任务并发提供了有效的解决方案。这样的模型有效提高了系统资源利用率,以及保证了并发任务的高效执行。在现实中,这种模型在许多网络应用程序和分布式系统中都取得了很好的应用成果。
123 35
|
4月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
124 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
6月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
459 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
7月前
|
网络协议 安全 网络安全
应用程序中的网络协议:原理、应用与挑战
网络协议是应用程序实现流畅运行和安全通信的基石。了解不同协议的特点和应用场景,以及它们面临的挑战和应对策略,对于开发者和用户都具有重要意义。在未来,随着技术的不断发展,网络协议也将不断优化和创新,为数字世界的发展提供更强大的支持。
201 1
|
10月前
|
机器学习/深度学习 自然语言处理 数据可视化
【由浅到深】从神经网络原理、Transformer模型演进、到代码工程实现
阅读这个文章可能的收获:理解AI、看懂模型和代码、能够自己搭建模型用于实际任务。
988 56
|
8月前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
2175 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
9月前
|
前端开发 网络协议 安全
【网络原理】——HTTP协议、fiddler抓包
HTTP超文本传输,HTML,fiddler抓包,URL,urlencode,HTTP首行方法,GET方法,POST方法
|
9月前
|
域名解析 网络协议 关系型数据库
【网络原理】——带你认识IP~(长文~实在不知道取啥标题了)
IP协议详解,IP协议管理地址(NAT机制),IP地址分类、组成、特殊IP地址,MAC地址,数据帧格式,DNS域名解析系统
|
9月前
|
存储 JSON 缓存
【网络原理】——HTTP请求头中的属性
HTTP请求头,HOST、Content-Agent、Content-Type、User-Agent、Referer、Cookie。

热门文章

最新文章