推荐系统召回中台技术实践

简介: 召回是推荐系统的第一阶段,主要根据用户和商品部分特征,从海量的物料库里,快速找回一小部分用户潜在感兴趣的物品,然后交给排序环节。这部分需要处理的数据量非常大,速度要求快,所有使用的策略、模型和特征都不能太复杂。

召回是推荐系统的第一阶段,主要根据用户和商品部分特征,从海量的物料库里,快速找回一小部分用户潜在感兴趣的物品,然后交给排序环节。这部分需要处理的数据量非常大,速度要求快,所有使用的策略、模型和特征都不能太复杂。

1.png

召回中台在推荐系统中应该扮演什么样的角色呢?答案可能为

  • 推荐候选的生成(系统定位)
  • 复制机制的注入(生态建设)

图片2.png

3.png

召回中台里模型化召回是很重要的组成部分。模型化召回可以分为两部分,包括召回模型的学习与更新,以及线上的Ann检索服务。在召回模型的学习与更新阶段,主要是基于用户平台行为信息,针对特定的学习目标,完成基于表征学习的召回模型训练和更新,该模型能够产出有效的高层User表征向量和Item表征向量。从学习目标来看,常见的召回模型包括内容语义类、行为偏好类、关系匹配类等。

图片4.png

从传统个性化召回到模型化召回

图片5.png

模型化召回的多目标处理

图片6.png

模型化召回的多样性

图片7.png

多目标召回的处理流程

图片8.png

图片9.png

物料冷启动

图片10.png

图片11.png

图片13.png

图片14.png

大规模召回中台的“深度化”展望

图片15.png

图模型应用

图片16.png

目录
相关文章
|
7月前
|
人工智能 自然语言处理 NoSQL
对谈Concured首席技术官:利用AI和MongoDB打造个性化内容推荐系统
内容无处不在。无论消费者寻找什么或所处任何行业,找到内容并不困难;关键在于如何找到对应的内容。
1654 0
|
29天前
|
机器学习/深度学习 搜索推荐 算法
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验。本文探讨了推荐系统的基本原理、常用算法、实现步骤及Python应用,介绍了如何克服数据稀疏性、冷启动等问题,强调了合理选择算法和持续优化的重要性。
65 4
|
6月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统的算法与实现:深入解析与实践
【6月更文挑战第14天】本文深入探讨了推荐系统的原理与实现,包括用户和项目建模、协同过滤、内容过滤及混合推荐算法。通过收集用户行为数据,系统预测用户兴趣,提供个性化推荐。实践中,涉及数据处理、建模、算法选择及结果优化。随着技术发展,推荐系统将持续改进,提升性能和用户体验。
|
2月前
|
数据采集 搜索推荐
推荐系统实践之新闻推荐baseline理解
推荐系统实践之新闻推荐baseline理解
37 1
|
7月前
|
机器学习/深度学习 数据采集 人工智能
构建一个基于AI的推荐系统的技术探索
【5月更文挑战第23天】本文探讨了构建基于AI的推荐系统的关键技术,包括数据收集、预处理、特征工程、推荐算法(如协同过滤、内容过滤、深度学习)及结果评估。通过理解用户行为和偏好,推荐系统能提供个性化建议。实现步骤涉及确定业务需求、设计数据方案、预处理、算法选择、评估优化及系统部署。随着技术进步,未来推荐系统将更加智能。
|
2月前
|
数据采集 搜索推荐
推荐系统实践之新闻推荐baseline理解
推荐系统实践之新闻推荐baseline理解
67 1
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
用AI技术打造个性化新闻推荐系统
【10月更文挑战第7天】本文将介绍如何使用AI技术构建一个个性化的新闻推荐系统。我们将从数据收集、处理,到模型训练和优化,最后实现推荐系统的全过程进行讲解。通过这篇文章,你将了解到如何利用机器学习和深度学习技术,为用户提供精准的新闻推荐。
55 0
|
4月前
|
数据采集 机器学习/深度学习 人工智能
利用AI技术实现个性化新闻推荐系统
【8月更文挑战第31天】 本文将介绍如何利用AI技术实现一个个性化的新闻推荐系统。我们将使用Python语言和一些常用的机器学习库,如scikit-learn和pandas,来构建一个简单的推荐系统。这个系统可以根据用户的阅读历史和兴趣偏好,为他们推荐相关的新闻文章。我们将从数据预处理、特征提取、模型训练和结果评估等方面进行详细的讲解。
|
5月前
|
机器学习/深度学习 搜索推荐 算法
深度学习在推荐系统中的应用:技术解析与实践
【7月更文挑战第6天】深度学习在推荐系统中的应用为推荐算法的发展带来了新的机遇和挑战。通过深入理解深度学习的技术原理和应用场景,并结合具体的实践案例,我们可以更好地构建高效、准确的推荐系统,为用户提供更加个性化的推荐服务。
|
6月前
|
机器学习/深度学习 人工智能 搜索推荐
构建基于AI的个性化新闻推荐系统:技术探索与实践
【6月更文挑战第5天】构建基于AI的个性化新闻推荐系统,通过数据预处理、用户画像构建、特征提取、推荐算法设计及结果评估优化,解决信息爆炸时代用户筛选新闻的难题。系统关键点包括:数据清洗、用户兴趣分析、表示学习、内容及协同过滤推荐。实践案例证明,结合深度学习的推荐系统能提升用户体验,未来系统将更智能、个性化。