【通用行业开发部】Elasticsearch集成IK分词器

简介: Elasticsearch集成IK分词器

IK分词器

NOTE: 默认ES中采用标准分词器进行分词,这种方式并不适用于中文网站,因此需要修改ES对中文友好分词,从而达到更佳的搜索的效果。

在线安装IK

在线安装IK  (v5.5.1版本后开始支持在线安装 )

# 1. 在es安装目录中执行如下命令[es@linux elasticsearch-6.2.4]$ ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.8.0/elasticsearch-analysis-ik-6.8.0.zip
-> Downloading https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.2.4/elasticsearch-analysis-ik-6.2.4.zip
[=================================================] 100%
-> Installed analysis-ik
[es@linux elasticsearch-6.2.4]$ ls plugins/analysis-ik
[es@linux elasticsearch-6.2.4]$ cd plugins/analysis-ik/
[es@linux analysis-ik]$ lscommons-codec-1.9.jar    elasticsearch-analysis-ik-6.2.4.jar  httpcore-4.4.4.jar
commons-logging-1.2.jar  httpclient-4.5.2.jar                 plugin-descriptor.properties
# 2.重启es生效# 3.测试ik安装成功GET /_analyze
{
"text": "中华人民共和国国歌",
"analyzer": "ik_smart"}
# 4.在线安装IK配置文件  - es安装目录中config目录analysis-ik/IKAnalyzer.cfg.xml

NOTE: 要求版本严格与当前使用版本一致,如需使用其他版本替换 6.2.4 为使用的版本号

本地安装IK

可以将对应的IK分词器下载到本地,然后再安装

# 1. 下载对应版本- [es@linux ~]$ wget https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.2.4/elasticsearch-analysis-ik-6.2.4.zip
# 2. 解压- [es@linux ~]$ unzip elasticsearch-analysis-ik-6.2.4.zip #先使用yum install -y unzip# 3. 移动到es安装目录的plugins目录中- [es@linux ~]$ ls elasticsearch-6.2.4/plugins/
  [es@linux ~]$ mv elasticsearch elasticsearch-6.2.4/plugins/
  [es@linux ~]$ ls elasticsearch-6.2.4/plugins/elasticsearch
  [es@linux ~]$ ls elasticsearch-6.2.4/plugins/elasticsearch/
        commons-codec-1.9.jar    config                               httpclient-4.5.2.jar          plugin-descriptor.properties
        commons-logging-1.2.jar  elasticsearch-analysis-ik-6.2.4.jar  httpcore-4.4.4.jar
# 4. 重启es生效# 5. 本地安装ik配置目录为  - es安装目录中/plugins/analysis-ik/config/IKAnalyzer.cfg.xml

测试IK分词器

NOTE: IK分词器提供了两种mapping类型用来做文档的分词分别是 ik_max_wordik_smart

ik_max_word 和 ik_smart 什么区别?

ik_max_word: 会将文本做最细粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种可能的组合;

ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,国歌”。

测试数据

DELETE/emsPUT/ems{
"mappings":{
"emp":{
"properties":{
"name":{
"type":"text",
"analyzer": "ik_max_word"        },
"age":{
"type":"integer"        },
"bir":{
"type":"date"        },
"content":{
"type":"text",
"analyzer": "ik_max_word"        },
"address":{
"type":"keyword"        }
      }
    }
  }
}
PUT/ems/emp/_bulk  {"index":{}}
  {"name":"小黑","age":23,"bir":"2012-12-12","content":"为开发团队选择一款优秀的MVC框架是件难事儿,在众多可行的方案中决择需要很高的经验和水平","address":"北京"}
  {"index":{}}
  {"name":"王小黑","age":24,"bir":"2012-12-12","content":"Spring 框架是一个分层架构,由 7 个定义良好的模块组成。Spring 模块构建在核心容器之上,核心容器定义了创建、配置和管理 bean 的方式","address":"上海"}
  {"index":{}}
  {"name":"张小五","age":8,"bir":"2012-12-12","content":"Spring Cloud 作为Java 语言的微服务框架,它依赖于Spring Boot,有快速开发、持续交付和容易部署等特点。Spring Cloud 的组件非常多,涉及微服务的方方面面,井在开源社区Spring 和Netflix 、Pivotal 两大公司的推动下越来越完善","address":"无锡"}
  {"index":{}}
  {"name":"win7","age":9,"bir":"2012-12-12","content":"Spring的目标是致力于全方位的简化Java开发。 这势必引出更多的解释, Spring是如何简化Java开发的?","address":"南京"}
  {"index":{}}
  {"name":"梅超风","age":43,"bir":"2012-12-12","content":"Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API","address":"杭州"}
  {"index":{}}
  {"name":"张无忌","age":59,"bir":"2012-12-12","content":"ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口","address":"北京"}
GET/ems/emp/_search{
"query":{
"term":{
"content":"框架"    }
  },
"highlight": {
"pre_tags": ["<span style='color:red'>"],
"post_tags": ["</span>"],
"fields": {
"*":{}
    }
  }
}

配置扩展词

IK支持自定义扩展词典停用词典,所谓扩展词典就是有些词并不是关键词,但是也希望被ES用来作为检索的关键词,可以将这些词加入扩展词典。停用词典就是有些词是关键词,但是出于业务场景不想使用这些关键词被检索到,可以将这些词放入停用词典。

如何定义扩展词典和停用词典可以修改IK分词器中config目录中IKAnalyzer.cfg.xml这个文件。

NOTE:词典的编码必须为UTF-8,否则无法生效

1. 修改vim IKAnalyzer.cfg.xml
<?xmlversion="1.0" encoding="UTF-8"?><!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"><properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典 --><entrykey="ext_dict">ext_dict.dic</entry><!--用户可以在这里配置自己的扩展停止词字典--><entrykey="ext_stopwords">ext_stopword.dic</entry></properties>2. 在ik分词器目录下config目录中创建ext_dict.dic文件   编码一定要为UTF-8才能生效
  vim ext_dict.dic 加入扩展词即可
3. 在ik分词器目录下config目录中创建ext_stopword.dic文件 
  vim ext_stopword.dic 加入停用词即可
4.重启es生效
相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
打赏
0
0
0
0
1
分享
相关文章
Elasticsearch AI Assistant 集成 DeepSeek,1分钟搭建智能运维助手
Elasticsearch 新支持 DeepSeek 系列模型,使用 AI 助手,通过自然语言交互,为可观测性分析、安全运维管理及数据智能处理提供一站式解决方案。
482 3
Elasticsearch AI Assistant 集成 DeepSeek,1分钟搭建智能运维助手
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
124 5
elasticsearch学习三:elasticsearch-ik分词器的自定义配置 分词内容
这篇文章是关于如何自定义Elasticsearch的ik分词器配置以满足特定的中文分词需求。
281 0
elasticsearch学习三:elasticsearch-ik分词器的自定义配置 分词内容
ElasticSearch的IK分词器
ElasticSearch的IK分词器
135 7
|
4月前
|
springboot集成ElasticSearch使用completion实现补全功能
springboot集成ElasticSearch使用completion实现补全功能
82 1
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
498 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
GoFly快速开发框架集成ZincSearch全文搜索引擎 - Elasticsearch轻量级替代为ZincSearch全文搜索引擎
本文介绍了在项目开发中使用ZincSearch作为全文搜索引擎的优势,包括其轻量级、易于安装和使用、资源占用低等特点,以及如何在GoFly快速开发框架中集成和使用ZincSearch,提供了详细的开发文档和实例代码,帮助开发者高效地实现搜索功能。
351 0
ElasticSearch基础3——聚合、补全、集群。黑马旅游检索高亮+自定义分词器+自动补全+前后端消息同步
聚合、补全、RabbitMQ消息同步、集群、脑裂问题、集群分布式存储、黑马旅游实现过滤和搜索补全功能
Elasticsearch 与机器学习的集成
【9月更文第3天】Elasticsearch 不仅仅是一个强大的分布式搜索和分析引擎,它还是一个完整的数据平台,通过与 Kibana、Logstash 等工具结合使用,能够提供从数据采集、存储到分析的一站式解决方案。特别是,Elasticsearch 集成了机器学习(ML)功能,使得在实时数据流中进行异常检测和趋势预测成为可能。本文将详细介绍如何利用 Elasticsearch 的 ML 功能来检测异常行为或预测趋势。
280 4
Elasticsearch与深度学习框架的集成案例研究
Elasticsearch 是一个强大的搜索引擎和分析引擎,广泛应用于实时数据处理和全文搜索。深度学习框架如 TensorFlow 和 PyTorch 则被用来构建复杂的机器学习模型。本文将探讨如何将 Elasticsearch 与这些深度学习框架集成,以实现高级的数据分析和预测任务。
79 0

热门文章

最新文章