364 页 PyTorch 版《动手学深度学习》PDF 开源了(全中文,支持 Jupyter 运行)

简介: 364 页 PyTorch 版《动手学深度学习》PDF 开源了(全中文,支持 Jupyter 运行)

李沐,亚马逊 AI 主任科学家,名声在外!半年前,由李沐、Aston Zhang 等人合力打造的《动手学深度学习》正式上线,免费供大家阅读。这是一本面向中文读者的能运行、可讨论的深度学习教科书!


image.png


李沐的这本《动手学深度学习》也是使用 MXNet 框架写成的。但是很多入坑机器学习的萌新们使用的却是 PyTorch。如果有教材对应的 PyTorch 实现代码就更好了!


撒花,最近一位北大的学生把他翻译成了 Pytorch 版,原书中的 MXNet 代码实现改为PyTorch实现。


首先放上这份资源的 GitHub 地址:

https://github.com/ShusenTang/Dive-into-DL-PyTorch


然而,源项目由于写的是 Markdown ,公式和代码显示不太方便阅读。最近,我发现一位中国海洋大学大三学生将上面 PyTorch 版本的《动手深度学习》编译成完整的 PDF 文件。方便大家阅读以及解决 GitHub 上公式显示不全的问题。


image.png

image.png

项目地址:

https://github.com/OUCMachineLearning/OUCML/blob/master/BOOK/Dive-into-DL-PyTorch.pdf


内容简介:


本书⾯向希望了解深度学习,特别是对实际使⽤深度学习感兴趣的⼤学⽣、⼯程师和研究⼈员。本书并不要求你有任何深度学习或者机器学习的背景知识,我们将从头开始解释每⼀个概念。虽然深度学习技术与应⽤的阐述涉及了数学和编程,但你只需了解基础的数学和编程,例如基础的线性代数、微分和概率,以及基础的 Python 编程。


目录:


image.png

image.png

image.png

image.png


本 PDF 质量很高,代码和公式显示都很清晰,非常适合下载阅读。


资源下载:


PyTorch 版《动手学深度学习》共 364 页,附上云盘下载链接:


https://pan.baidu.com/s/17FcY52a8a-iYAYbyBmhBiQ&shfl=sharepset 

提取码:mrfk


附加资源:


在线预览地址:

https://zh.d2l.ai/


GitHub 项目地址:

https://github.com/d2l-ai/d2l-zh


课程视频地址:

https://space.bilibili.com/209599371/channel/detail?cid=23541

相关文章
|
4天前
|
人工智能 文字识别 数据挖掘
MarkItDown:微软开源的多格式转Markdown工具,支持将PDF、Word、图像和音频等文件转换为Markdown格式
MarkItDown 是微软开源的多功能文档转换工具,支持将 PDF、PPT、Word、Excel、图像、音频等多种格式的文件转换为 Markdown 格式,具备 OCR 文字识别、语音转文字和元数据提取等功能。
54 9
MarkItDown:微软开源的多格式转Markdown工具,支持将PDF、Word、图像和音频等文件转换为Markdown格式
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
Documind:开源 AI 文档处理工具,将 PDF 转换为图像提取结构化数据
Documind 是一款利用 AI 技术从 PDF 中提取结构化数据的先进文档处理工具,支持灵活的本地或云端部署。
94 8
Documind:开源 AI 文档处理工具,将 PDF 转换为图像提取结构化数据
|
25天前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
56 5
|
1月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
49 7
|
2月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
313 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
1月前
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
79 3
|
3月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
203 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
2月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
35 1
|
3月前
|
机器学习/深度学习 数据挖掘 PyTorch
🎓PyTorch深度学习入门课:编程小白也能玩转的高级数据分析术
踏入深度学习领域,即使是编程新手也能借助PyTorch这一强大工具,轻松解锁高级数据分析。PyTorch以简洁的API、动态计算图及灵活性著称,成为众多学者与工程师的首选。本文将带你从零开始,通过环境搭建、构建基础神经网络到进阶数据分析应用,逐步掌握PyTorch的核心技能。从安装配置到编写简单张量运算,再到实现神经网络模型,最后应用于图像分类等复杂任务,每个环节都配有示例代码,助你快速上手。实践出真知,不断尝试和调试将使你更深入地理解这些概念,开启深度学习之旅。
47 1
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
下一篇
DataWorks