51 个深度学习目标检测模型汇总,论文、源码一应俱全!

简介: 51 个深度学习目标检测模型汇总,论文、源码一应俱全!


目标检测(Object Detection)是深度学习 CV 领域的一个核心研究领域和重要分支。纵观 2013 年到 2019 年,从最早的 R-CNN、Fast R-CNN 到后来的 YOLO v2、YOLO v3 再到今年的 M2Det,新模型层出不穷,性能也越来越好!本文将会对目标检测近几年的发展和相关论文做出一份系统介绍,总结一份超全的文献 paper 列表。


模型列表先一睹为快!(建议收藏


image.png


这份目标检测超全的技术路线总结来自于 GitHub 上一个知名项目,作者是 Lee hoseong,项目地址是:


https://github.com/hoya012/deep_learning_object_detection


该技术路线横跨时间是 2014 年至 2019 年,上图总结了这期间目标检测所有重要的模型。图中标红的部分是作者认为比较重要,需要重点掌握的模型。当然每个人有都有各自的评价。


模型性能比较


FPS(速度)索引与硬件规格(如 CPU、GPU、RAM 等)有关,因此很难进行同等比较。解决方案是在具有相同规格的硬件上测量所有模型的性能,但这是非常困难和耗时的。比较结果如下:


image.png

image.png


下面举例对标红的重要模型进行介绍!


2014 年


R-CNN


Rich feature hierarchies for accurate object detection and semantic segmentation | Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik | [CVPR' 14]


论文:

https://arxiv.org/pdf/1311.2524.pdf


代码 Caffe:

https://github.com/rbgirshick/rcnn


OverFeat


OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | Pierre Sermanet, et al. | [ICLR' 14]


论文:

https://arxiv.org/pdf/1312.6229.pdf


代码 Torch:

https://github.com/sermanet/OverFeat


2015 年


Fast R-CNN


Fast R-CNN | Ross Girshick | [ICCV' 15]


论文:

https://arxiv.org/pdf/1504.08083.pdf


代码 caffe:

https://github.com/rbgirshick/fast-rcnn


Faster R-CNN


Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | Shaoqing Ren, et al. | [NIPS' 15]


论文:

https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf


代码 caffe:

https://github.com/rbgirshick/py-faster-rcnn


代码 tensorflow:

https://github.com/endernewton/tf-faster-rcnn


代码 pytorch:

https://github.com/jwyang/faster-rcnn.pytorch


2016 年


OHEM


Training Region-based Object Detectors with Online Hard Example Mining | Abhinav Shrivastava, et al. | [CVPR' 16]


论文:

https://arxiv.org/pdf/1604.03540.pdf


代码 caffe:

https://github.com/abhi2610/ohem


YOLO v1


You Only Look Once: Unified, Real-Time Object Detection | Joseph Redmon, et al. | [CVPR' 16]


论文:

https://arxiv.org/pdf/1506.02640.pdf


代码 c:

https://pjreddie.com/darknet/yolo/


SSD


Single Shot MultiBox Detector | Wei Liu, et al. | [ECCV' 16]


论文:

https://arxiv.org/pdf/1512.02325.pdf


代码 caffe:

https://github.com/weiliu89/caffe/tree/ssd


代码 tensorflow:

https://github.com/balancap/SSD-Tensorflow


代码 pytorch:

https://github.com/amdegroot/ssd.pytorch


R-FCN


Object Detection via Region-based Fully Convolutional Networks | Jifeng Dai, et al. | [NIPS' 16]


论文:

https://arxiv.org/pdf/1605.06409.pdf


代码 caffe:

https://github.com/daijifeng001/R-FCN


代码 caffe:

https://github.com/YuwenXiong/py-R-FCN


2017 年


YOLO v2


Better, Faster, Stronger | Joseph Redmon, Ali Farhadi | [CVPR' 17]


论文:

https://arxiv.org/pdf/1612.08242.pdf


代码 c:

https://pjreddie.com/darknet/yolo/


代码 caffe:

https://github.com/quhezheng/caffe_yolo_v2


代码 tensorflow:

https://github.com/nilboy/tensorflow-yolo


代码 tensorflow:

https://github.com/sualab/object-detection-yolov2


代码 pytorch:

https://github.com/longcw/yolo2-pytorch


FPN


Feature Pyramid Networks for Object Detection | Tsung-Yi Lin, et al. | [CVPR' 17]


论文:

http://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf


代码 caffe:

https://github.com/unsky/FPN


RetinaNet


Focal Loss for Dense Object Detection | Tsung-Yi Lin, et al. | [ICCV' 17]


论文:

https://arxiv.org/pdf/1708.02002.pdf


代码 keras:

https://github.com/fizyr/keras-retinanet


代码 pytorch:

https://github.com/kuangliu/pytorch-retinanet


代码 mxnet:

https://github.com/unsky/RetinaNet


代码 tensorflow:

https://github.com/tensorflow/tpu/tree/master/models/official/retinanet


Mask R-CNN


Kaiming He, et al. | [ICCV' 17]


论文:

http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf


代码 caffe2:

https://github.com/facebookresearch/Detectron


代码 tensorflow:

https://github.com/matterport/Mask_RCNN


代码 tensorflow:

https://github.com/CharlesShang/FastMaskRCNN


代码 pytorch:

https://github.com/multimodallearning/pytorch-mask-rcnn


2018 年


YOLO v3


An Incremental Improvement | Joseph Redmon, Ali Farhadi | [arXiv' 18]


论文:

https://pjreddie.com/media/files/papers/YOLOv3.pdf


代码 c:

https://pjreddie.com/darknet/yolo/


代码 pytorch

https://github.com/ayooshkathuria/pytorch-yolo-v3


代码 pytorch:

https://github.com/eriklindernoren/PyTorch-YOLOv3


代码 keras:

https://github.com/qqwweee/keras-yolo3


代码 tensorflow:

https://github.com/mystic123/tensorflow-yolo-v3


RefineDet


Single-Shot Refinement Neural Network for Object Detection | Shifeng Zhang, et al. | [CVPR' 18]


论文:

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf


代码 caffe:

https://github.com/sfzhang15/RefineDet


代码 chainer:

https://github.com/fukatani/RefineDet_chainer


代码 pytorch:

https://github.com/lzx1413/PytorchSSD


2019 年

M2Det


A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | Qijie Zhao, et al. | [AAAI' 19]


论文:

https://arxiv.org/pdf/1811.04533.pdf


参考文献


该项目的参考文献来自于论文《Deep Learning for Generic Object Detection: A Survey


论文地址:


https://arxiv.org/pdf/1809.02165v1.pdf

相关文章
|
20天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
164 73
|
3天前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
41 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
23天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
75 21
|
25天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
72 23
|
26天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费习惯预测的深度学习模型
使用Python实现智能食品消费习惯预测的深度学习模型
102 19
|
27天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
107 18
|
23天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
55 2
|
27天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
117 5
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
88 16
|
19天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
78 19