深入浅出机器学习技法(二):对偶支持向量机(DSVM)

简介: 上节课我们主要介绍了线性支持向量机(Linear Support Vector Machine)。

image.png

上节课我们主要介绍了线性支持向量机(Linear Support Vector Machine)。Linear SVM的目标是找出最“胖”的分割线进行正负类的分离,方法是使用二次规划来求出分类线。本节课将从另一个方面入手,研究对偶支持向量机(Dual Support Vector Machine),尝试从新的角度计算得出分类线,推广SVM的应用范围。

1Motivation of Dual SVM


首先,我们回顾一下,对于非线性SVM,我们通常可以使用非线性变换将变量从x域转换到z域中。然后,在z域中,根据上一节课的内容,使用线性SVM解决问题即可。上一节课我们说过,使用SVM得到large-margin,减少了有效的VC Dimension,限制了模型复杂度;另一方面,使用特征转换,目的是让模型更复杂,减小Ein。所以说,非线性SVM是把这两者目的结合起来,平衡这两者的关系。那么,特征转换下,求解QP问题在z域中的维度设为d^+1,如果模型越复杂,则d^+1越大,相应求解这个QP问题也变得很困难。当d^无限大的时候,问题将会变得难以求解,那么有没有什么办法可以解决这个问题呢?一种方法就是使SVM的求解过程不依赖d^,这就是我们本节课所要讨论的主要内容。

image.png

比较一下,我们上一节课所讲的Original SVM二次规划问题的变量个数是d^+1,有N个限制条件;而本节课,我们把问题转化为对偶问题(’Equivalent’ SVM),同样是二次规划,只不过变量个数变成N个,有N+1个限制条件。这种对偶SVM的好处就是问题只跟N有关,与d^无关,这样就不存在上文提到的当d^无限大时难以求解的情况。

image.png

如何把问题转化为对偶问题(’Equivalent’ SVM),其中的数学推导非常复杂,本文不做详细数学论证,但是会从概念和原理上进行简单的推导。

image.png

所以,在regularization问题中,λ是已知常量,求解过程变得容易。那么,对于dual SVM问题,同样可以引入λ,将条件问题转换为非条件问题,只不过λ是未知参数,且个数是N,需要对其进行求解。

image.png

这个函数右边第一项是SVM的目标,第二项是SVM的条件和拉格朗日因子αn的乘积。我们把这个函数称为拉格朗日函数,其中包含三个参数:b,w,αn。

image.png

image.png

2Lagrange Dual SVM


现在,我们已经将SVM问题转化为与拉格朗日因子αn有关的最大最小值形式。已知αn≥0,那么对于任何固定的α′,且αn′≥0,一定有如下不等式成立:

image.png上述不等式表明,我们对SVM的min和max做了对调,满足这样的关系,这叫做Lagrange dual problem。不等式右边是SVM问题的下界,我们接下来的目的就是求出这个下界。


已知≥是一种弱对偶关系,在二次规划QP问题中,如果满足以下三个条件:


  • 函数是凸的(convex primal)
  • 函数有解(feasible primal)
  • 条件是线性的(linear constraints)


那么,上述不等式关系就变成强对偶关系,≥变成=,即一定存在满足条件的解(b,w,α),使等式左边和右边都成立,SVM的解就转化为右边的形式。


经过推导,SVM对偶问题的解已经转化为无条件形式:

image.png

image.png

image.png

在下一部分中,我们将利用KKT条件来计算最优化问题中的α,进而得到b和w。


3Solving Dual SVM


上面我们已经得到了dual SVM的简化版了,接下来,我们继续对它进行一些优化。首先,将max问题转化为min问题,再做一些条件整理和推导,得到:

image.png

显然,这是一个convex的QP问题,且有N个变量αn,限制条件有N+1个。则根据上一节课讲的QP解法,找到Q,p,A,c对应的值,用软件工具包进行求解即可。

image.png

image.png

image.png

4Messages behind Dual SVM


回忆一下,上一节课中,我们把位于分类线边界上的点称为support vector(candidates)。本节课前面介绍了αn>0的点一定落在分类线边界上,这些点称之为support vector(注意没有candidates)。也就是说分类线上的点不一定都是支持向量,但是满足αn>0的点,一定是支持向量。

image.png

SV只由αn>0的点决定,根据上一部分推导的w和b的计算公式,我们发现,w和b仅由SV即αn>0的点决定,简化了计算量。这跟我们上一节课介绍的分类线只由“胖”边界上的点所决定是一个道理。也就是说,样本点可以分成两类:一类是support vectors,通过support vectors可以求得fattest hyperplane;另一类不是support vectors,对我们求得fattest hyperplane没有影响。

image.png

总结一下,本节课和上节课主要介绍了两种形式的SVM,一种是Primal Hard-Margin SVM,另一种是Dual Hard_Margin SVM。Primal Hard-Margin SVM有d^+1个参数,有N个限制条件。当d^+1很大时,求解困难。而Dual Hard_Margin SVM有N个参数,有N+1个限制条件。当数据量N很大时,也同样会增大计算难度。两种形式都能得到w和b,求得fattest hyperplane。通常情况下,如果N不是很大,一般使用Dual SVM来解决问题。

image.png

image.png

5Summary


本节课主要介绍了SVM的另一种形式:Dual SVM。我们这样做的出发点是为了移除计算过程对d^的依赖。Dual SVM的推导过程是通过引入拉格朗日因子α,将SVM转化为新的非条件形式。然后,利用QP,得到最佳解的拉格朗日因子α。再通过KKT条件,计算得到对应的w和b。最终求得fattest hyperplane。下一节课,我们将解决Dual SVM计算过程中对d^的依赖问题。

相关文章
|
8月前
|
机器学习/深度学习 Python
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-4
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
162 1
|
8月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第27天】在数据科学和人工智能的领域中,支持向量机(SVM)是一种强大的监督学习模型,它基于统计学习理论中的VC维理论和结构风险最小化原理。本文将详细介绍SVM的工作原理、核心概念以及如何在实际问题中应用该算法进行分类和回归分析。我们还将讨论SVM面临的挑战以及如何通过调整参数和核技巧来优化模型性能。
|
5月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
95 3
|
5月前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
229 2
|
5月前
|
机器学习/深度学习 算法
【机器学习】解释对偶的概念及SVM中的对偶算法?(面试回答)
解释了对偶的概念,指出对偶性在优化问题中的重要性,尤其是在强对偶性成立时可以提供主问题的最优下界,并且详细阐述了支持向量机(SVM)中对偶算法的应用,包括如何将原始的最大间隔优化问题转换为对偶问题来求解。
112 2
|
5月前
|
机器学习/深度学习 算法
【机器学习】支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择(面试回答)?
文章对支持向量机(SVM)、逻辑回归(LR)和决策树(DT)进行了直观和理论上的对比,并提供了在选择这些算法时的考虑因素,包括模型复杂度、损失函数、数据量需求、对缺失值的敏感度等。
75 1
|
8月前
|
机器学习/深度学习 数据采集 算法
深入理解并应用机器学习算法:支持向量机(SVM)
【5月更文挑战第13天】支持向量机(SVM)是监督学习中的强分类算法,用于文本分类、图像识别等领域。它寻找超平面最大化间隔,支持向量是离超平面最近的样本点。SVM通过核函数处理非线性数据,软间隔和正则化避免过拟合。应用步骤包括数据预处理、选择核函数、训练模型、评估性能及应用预测。优点是高效、鲁棒和泛化能力强,但对参数敏感、不适合大规模数据集且对缺失数据敏感。理解SVM原理有助于优化实际问题的解决方案。
|
8月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第6天】在数据科学和人工智能的广阔天地中,支持向量机(SVM)以其强大的分类能力与理论深度成为机器学习领域中的一个闪亮的星。本文将深入探讨SVM的核心原理、关键特性以及实际应用案例,为读者提供一个清晰的视角来理解这一高级算法,并展示如何利用SVM解决实际问题。
207 7
|
7月前
|
机器学习/深度学习 算法 Windows
【阿旭机器学习实战】【34】使用SVM检测蘑菇是否有毒--支持向量机
【阿旭机器学习实战】【34】使用SVM检测蘑菇是否有毒--支持向量机