台湾大学林轩田机器学习基石课程学习笔记9 -- Linear Regression

简介: 上节课,我们主要介绍了在有noise的情况下,VC Bound理论仍然是成立的。

上节课,我们主要介绍了在有noise的情况下,VC Bound理论仍然是成立的。同时,介绍了不同的error measure方法。本节课介绍机器学习最常见的一种算法:Linear Regression。

一、线性回归问题


在之前的Linear Classification课程中,讲了信用卡发放的例子,利用机器学习来决定是否给用户发放信用卡。本节课仍然引入信用卡的例子,来解决给用户发放信用卡额度的问题,这就是一个线性回归(Linear Regression)问题。image.png

image.png

根据上图,在一维或者多维空间里,线性回归的目标是找到一条直线(对应一维)、一个平面(对应二维)或者更高维的超平面,使样本集中的点更接近它,也就是残留误差Residuals最小化。

一般最常用的错误测量方式是基于最小二乘法,其目标是计算误差的最小平方和对应的权重w,即上节课介绍的squared error:

image.png


二、线性回归算法


样本数据误差Ein是权重w的函数,因为X和y都是已知的。我们的目标就是找出合适的w,使Ein能够最小。那么如何计算呢?

首先,运用矩阵转换的思想,将Ein计算转换为矩阵的形式。

image.png

image.png

image.png

image.png

image.png

image.png

三、泛化问题

image.png

有两种观点:1、这不属于机器学习范畴。因为这种closed-form解的形式跟一般的机器学习算法不一样,而且在计算最小化误差的过程中没有用到迭代。2、这属于机器学习范畴。因为从结果上看,Ein和Eout都实现了最小化,而且实际上在计算逆矩阵的过程中,也用到了迭代。

其实,只从结果来看,这种方法的确实现了机器学习的目的。下面通过介绍一种更简单的方法,证明linear regression问题是可以通过线下最小二乘法方法计算得到好的Ein和Eout的。


image.png

image.png

image.png

image.png

介绍下该I-H这种转换的物理意义:原来有一个有N个自由度的向量y,投影到一个有d+1维的空间x(代表一列的自由度,即单一输入样本的参数,如图中粉色区域),而余数剩余的自由度最大只有N-(d+1)种。

在存在noise的情况下,上图变为:

image.png

图中,粉色空间的红色箭头是目标函数f(x),虚线箭头是noise,可见,真实样本输出y由f(x)和noise相加得到。由上面推导,已知向量y经过I-H转换为y−y^,而noise与y是线性变换关系,那么根据线性函数知识,我们推导出noise经过I-H也能转换为y−y^。则对于样本平均误差,有下列推导成立:

image.png

image.png

image.png


四、Linear Regression方法解决Linear Classification问题


之前介绍的Linear Classification问题使用的Error Measure方法用的是0/1 error,那么Linear Regression的squared error是否能够应用到Linear Classification问题?


image.png

image.png

image.png

五、总结

本节课,我们主要介绍了Linear Regression。首先,我们从问题出发,想要找到一条直线拟合实际数据值;然后,我们利用最小二乘法,用解析形式推导了权重w的closed-form解;接着,用图形的形式得到image.png,证明了linear regression是可以进行机器学习的,;最后,我们证明linear regressin这种方法可以用在binary classification上,虽然上界变宽松了,但是仍然能得到不错的学习方法。

相关文章
|
机器学习/深度学习
Stanford 机器学习练习 Part 2 Logistics Regression
以下是我学习Andrew Ng machine learning 课程时logistic regression的相关代码,仅作为参考,因为是初学,暂时没办法做出总结。
53 1
|
机器学习/深度学习
Stanford 机器学习练习 Part 1 Linear Regression
In octave, we return values by defining which variables % represent the return values (at the top of the file)
56 0
|
4月前
|
机器学习/深度学习 Python
训练集、测试集与验证集:机器学习模型评估的基石
在机器学习中,数据集通常被划分为训练集、验证集和测试集,以评估模型性能并调整参数。训练集用于拟合模型,验证集用于调整超参数和防止过拟合,测试集则用于评估最终模型性能。本文详细介绍了这三个集合的作用,并通过代码示例展示了如何进行数据集的划分。合理的划分有助于提升模型的泛化能力。
|
6月前
|
机器学习/深度学习 算法 数据可视化
Fisher模型在统计学和机器学习领域通常指的是Fisher线性判别分析(Fisher's Linear Discriminant Analysis,简称LDA)
Fisher模型在统计学和机器学习领域通常指的是Fisher线性判别分析(Fisher's Linear Discriminant Analysis,简称LDA)
|
机器学习/深度学习 存储 算法
机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
210 0
机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
|
8月前
|
机器学习/深度学习 数据采集 算法
机器学习:升维(Polynomial Regression)
该文介绍了升维的概念,指出在低维度中难以对混合数据进行有效分类,而升维是通过算法将数据投射到高维空间以改善模型性能。文章以多项式回归为例,说明了如何通过升维将非线性关系转换为线性关系,并提供了Python代码示例展示了如何使用`PolynomialFeatures`进行升维。代码结果显示,随着维度增加,模型从欠拟合逐渐过渡到过拟合。
682 0
|
8月前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch的机器学习Regression问题实例(附源码)
基于Pytorch的机器学习Regression问题实例(附源码)
96 1
|
8月前
|
机器学习/深度学习 数据采集 数据可视化
【机器学习】样本、特征、标签:构建智能模型的三大基石
【机器学习】样本、特征、标签:构建智能模型的三大基石
3385 0
|
机器学习/深度学习 资源调度 算法
学习笔记: 机器学习经典算法-逻辑回归(Logistic Regression)
机器学习经典算法-个人笔记和学习心得分享
174 0
|
8月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
261 14