使用 Prometheus + Grafana 监控 k8s 上的 Spring Boot 应用

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 本文主要介绍如何使用 Prometheus 和 Grafana 可视化监控运行在 k8s 上的 Spring Boot 应用,监控指标包括 CPU、内存、线程信息、日志信息、HTTP 请求、JVM 等。

背景

本文主要介绍如何使用 Prometheus 和 Grafana 可视化监控运行在 k8s 上的 Spring Boot 应用,监控指标包括 CPU、内存、线程信息、日志信息、HTTP 请求、JVM 等。


技术方案


技术方案如下图所示:image.png


首先我们需要在 Spring Boot 应用中使用 Spring Boot Actuator 监控应用、暴露指标,并使用 Micrometer Prometheus 将 Actuator 监控指标转换为 Prometheus 格式。

Micrometer 为 Java 平台上的性能数据收集提供了一个通用的 API,类似于 SLF4J ,只不过它关注的不是Logging(日志),而是application metrics(应用指标)。 简而言之,它就是应用监控界的SLF4J。


然后在 k8s 集群中,我们需要通过 Service 对外提供 Spring Boot 应用的指标接口。

Prometheus 是一个开源系统监控和警报工具包,可以采集监控指标,并存储为时间序列数据,Prometheus 还提供了灵活的查询语言 PromQL 来查询数据。Prometheus 通过拉模型采集指标,所以我们需要在 Prometheus 集群中配置服务发现(ServiceMonitor)来定期从应用中抓取指标。


Grafana 是一个开源的可视化分析平台,可以用它创建监控仪表盘、配置告警等。

整体个配置流程如下:

image.png


部署应用

应用配置

pom.xml 中添加如下配置:


<!-- 开启 Spring Boot Actuator --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId></dependency><!-- 将 Actuator 指标转换为 Prometheus 格式 --><dependency><groupId>io.micrometer</groupId><artifactId>micrometer-registry-prometheus</artifactId><version>${micrometer.version}</version></dependency>



然后修改 application.yaml 中添加 Spring Boot Actuator 相关配置:


spring:  application:    name: spring-boot-demo
management:  endpoints:    web:      exposure:        include: "*"    health:      show-details: always
  metrics:    export:      prometheus:        enable: true    tags:      application: spring-boot-demo



至此,应用配置就完成了,可以通过 /actuator/prometheus 接口查看配置是否正确:


$ curl'http://localhost:8080/actuator/prometheus'-i-X GET


返回结果如下所示:


HTTP/1.1 200 OK
Content-Type: text/plain;version=0.0.4;charset=utf-8
Content-Length: 2375# HELP jvm_buffer_memory_used_bytes An estimate of the memory that the Java virtual machine is using for this buffer pool# TYPE jvm_buffer_memory_used_bytes gaugejvm_buffer_memory_used_bytes{id="direct",} 489719.0
jvm_buffer_memory_used_bytes{id="mapped",} 0.0
# HELP jvm_memory_committed_bytes The amount of memory in bytes that is committed for the Java virtual machine to use# TYPE jvm_memory_committed_bytes gaugejvm_memory_committed_bytes{area="heap",id="PS Survivor Space",} 5.1380224E7
jvm_memory_committed_bytes{area="heap",id="PS Old Gen",} 4.86539264E8
jvm_memory_committed_bytes{area="heap",id="PS Eden Space",} 2.11812352E8
jvm_memory_committed_bytes{area="nonheap",id="Metaspace",} 1.62439168E8
jvm_memory_committed_bytes{area="nonheap",id="Code Cache",} 5.4329344E7
jvm_memory_committed_bytes{area="nonheap",id="Compressed Class Space",} 2.4551424E7
# HELP jvm_buffer_total_capacity_bytes An estimate of the total capacity of the buffers in this pool# TYPE jvm_buffer_total_capacity_bytes gaugejvm_buffer_total_capacity_bytes{id="direct",} 489718.0
jvm_buffer_total_capacity_bytes{id="mapped",} 0.0
# HELP jvm_memory_max_bytes The maximum amount of memory in bytes that can be used for memory management# TYPE jvm_memory_max_bytes gaugejvm_memory_max_bytes{area="heap",id="PS Survivor Space",} 5.1380224E7
jvm_memory_max_bytes{area="heap",id="PS Old Gen",} 7.16177408E8
jvm_memory_max_bytes{area="heap",id="PS Eden Space",} 2.31735296E8
jvm_memory_max_bytes{area="nonheap",id="Metaspace",} -1.0
jvm_memory_max_bytes{area="nonheap",id="Code Cache",} 2.5165824E8
jvm_memory_max_bytes{area="nonheap",id="Compressed Class Space",} 1.073741824E9
# HELP jvm_buffer_count_buffers An estimate of the number of buffers in the pool# TYPE jvm_buffer_count_buffers gaugejvm_buffer_count_buffers{id="direct",} 17.0
jvm_buffer_count_buffers{id="mapped",} 0.0
# HELP jvm_memory_used_bytes The amount of used memory# TYPE jvm_memory_used_bytes gaugejvm_memory_used_bytes{area="heap",id="PS Survivor Space",} 5.1139432E7
jvm_memory_used_bytes{area="heap",id="PS Old Gen",} 9.7572216E7
jvm_memory_used_bytes{area="heap",id="PS Eden Space",} 1.47234248E8
jvm_memory_used_bytes{area="nonheap",id="Metaspace",} 1.46403048E8
jvm_memory_used_bytes{area="nonheap",id="Code Cache",} 5.3970112E7
jvm_memory_used_bytes{area="nonheap",id="Compressed Class Space",} 2.1374208E7


配置 Service


因为应用是部署在 k8s 上的,由多个 Pod 组成,所以还需要为 Pod 添加 Service,对外提供 HTTP 服务,这样 Prometheus 才可以抓取监控指标。

在 k8s 中添加类似下面的 Service:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: spring-boot-demo-exporter
  name: spring-boot-demo-exporter
  namespace: default
spec:
  ports:
- name: spring-boot-demo-exporter
      port: 8080      protocol: TCP
      targetPort: 8080  selector:
    app: spring-boot-demo
  type: NodePort

需要注意 spec.selector 需要与 Pod 的标签对应。例如使用 Deployment 部署应用,则需要与 Deployment 的 spec.template.metadata.labels 对应,这样 Service 才能知道对应的 Pod。


配置服务发现

如果使用的是自己部署的 Prometheus 服务,则可以在 prometheus.yml 中添加上 Service 对应的任务,例如:

scrape_configs:
# ...-  job_name: 'spring-boot-demo'# Prometheus 任务名称,自定义     metrics_path: '/actuator/prometheus'# 指标获取路径     scrape_interval: 5s # 抓取指标的间隔时间     static_configs:
- targets: ['spring-boot-demo-exporter:8080'] # 指标访问入口,即 k8s 集群的 Service


如果使用的是云厂商提供的 Prometheus 服务,则需要安装云厂商的规则添加服务发现。如 阿里云 Prometheus 监控 的 ServiceMonitor 配置如下:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: spring-boot-exporter
  namespace: default
spec:
  endpoints:
- interval: 30s
# Prometheus Exporter 对应的 Path 的值    path: /actuator/prometheus
# service.yaml 中 Prometheus Exporter 对应的 Port 的 Name 字段的值    port: spring-boot-exporter
  namespaceSelector:
    any: true  selector:
    matchLabels:
# service.yaml 的 Label 字段的值以定位目标 service.yaml      app: spring-boot-demo-exporter



配置大盘

Grafana 提供了丰富的大盘模板,可以在其官网搜索合适的大盘导入到自己的 Grafana 监控中。

image.png



我使用的是这两个大盘:



最终效果预览如下:


image.png

Spring Boot 监控

image.png

JVM 监控




总结


至此,基于 Prometheus + Grafana 的 Spring Boot 应用监控系统就创建完成了。接下来还可以使用 Grafana 实现告警,这类就不赘述了。


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
3月前
|
Prometheus Kubernetes 监控
Prometheus 与 Kubernetes 的集成
【8月更文第29天】随着容器化应用的普及,Kubernetes 成为了管理这些应用的首选平台。为了有效地监控 Kubernetes 集群及其上的应用,Prometheus 提供了一个强大的监控解决方案。本文将详细介绍如何在 Kubernetes 集群中部署和配置 Prometheus,以便对容器化应用进行有效的监控。
96 1
|
20天前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
107 60
|
21天前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
125 62
|
27天前
|
监控 Java 对象存储
监控与追踪:如何利用Spring Cloud Sleuth和Netflix OSS工具进行微服务调试
监控与追踪:如何利用Spring Cloud Sleuth和Netflix OSS工具进行微服务调试
37 1
|
3月前
|
Prometheus 监控 Cloud Native
Spring Boot 性能护航!Prometheus、Grafana、ELK 组合拳,点燃数字化时代应用稳定之火
【8月更文挑战第29天】在现代软件开发中,保证应用性能与稳定至关重要。Spring Boot 作为流行的 Java 框架,结合 Prometheus、Grafana 和 ELK 可显著提升监控与分析能力。Prometheus 负责收集时间序列数据,Grafana 将数据可视化,而 ELK (Elasticsearch、Logstash、Kibana)则管理并分析应用日志。通过具体实例演示了如何在 Spring Boot 应用中集成这些工具:配置 Prometheus 获取度量信息、Grafana 显示结果及 ELK 分析日志,从而帮助开发者快速定位问题,确保应用稳定高效运行。
96 1
|
3月前
|
Prometheus Kubernetes 监控
Kubernetes(K8S) 监控 Prometheus + Grafana
Kubernetes(K8S) 监控 Prometheus + Grafana
208 2
|
3月前
|
Prometheus Kubernetes Cloud Native
使用prometheus来避免Kubernetes CPU Limits造成的事故
使用prometheus来避免Kubernetes CPU Limits造成的事故
65 7
|
3月前
|
Java Spring 监控
Spring Boot Actuator:守护你的应用心跳,让监控变得触手可及!
【8月更文挑战第31天】Spring Boot Actuator 是 Spring Boot 框架的核心模块之一,提供了生产就绪的特性,用于监控和管理 Spring Boot 应用程序。通过 Actuator,开发者可以轻松访问应用内部状态、执行健康检查、收集度量指标等。启用 Actuator 需在 `pom.xml` 中添加 `spring-boot-starter-actuator` 依赖,并通过配置文件调整端点暴露和安全性。Actuator 还支持与外部监控工具(如 Prometheus)集成,实现全面的应用性能监控。正确配置 Actuator 可显著提升应用的稳定性和安全性。
105 0
|
4月前
|
监控 druid Java
spring boot 集成配置阿里 Druid监控配置
spring boot 集成配置阿里 Druid监控配置
261 6
|
1天前
|
Prometheus 监控 Cloud Native
基于Docker安装Grafana和Prometheus
Grafana 是一款用 Go 语言开发的开源数据可视化工具,支持数据监控和统计,并具备告警功能。通过 Docker 部署 Grafana 和 Prometheus,可实现系统数据的采集、展示和告警。默认登录用户名和密码均为 admin。配置 Prometheus 数据源后,可导入主机监控模板(ID 8919)进行数据展示。
17 2