阿里云机器学习模型在线服务自定义Processor部署PMML模型(二)

简介: 阿里云机器学习模型在线服务自定义Processor部署PMML模型(一)中介绍了使用EASCMD搭建环境,进行自定义processor的部署,这里介绍使用阿里云提供的镜像进行模型的在线部署,并通过Java SDK演示模型的在线调用。

Step By Step

1、直接使用镜像获取Python环境
2、容器配置
3、镜像构建与上传
4、基于构建镜像创建EAS服务
5、Java SDK调用服务


一、直接使用镜像获取Python环境
  • 1.1 如果未安装Docker,请参考链接先安装Docker环境

图片.png

  • 1.2 run命令进入容器
sudo docker run -ti registry.cn-shanghai.aliyuncs.com/eas/eas-python-base-image:py3.6-allspark-0.8
二、容器配置
  • 2.1 删除app.py,下载pmml文件

图片.png

  • 2.2 docker中安装:sklearn-pmml-model
ENV/bin/pip install sklearn-pmml-model

图片.png

三、镜像构建与上传
  • 3.1 登陆阿里云镜像服务
sudo docker login --username=gts mubu**.cn-shanghai.cr.aliyuncs.com

图片.png

  • 3.2 获取容器ID

图片.png

  • 3.3 基于容器生成镜像
sudo docker commit d52f5f01607b mubu .cn-shanghai.cr.aliyuncs.com/taro/eas_pmml:v2

图片.png

  • 3.4 提交镜像到阿里云镜像仓库
sudo docker push mubu .cn-shanghai.cr.aliyuncs.com/taro/eas_pmml:v2

图片.png

  • 3.5 镜像仓库查看

图片.png

  • 3.6 设置镜像公开匿名拉取权限

图片.png

四、基于构建镜像创建EAS服务
  • 4.1 app.py代码
# -*- coding: utf-8 -*-
import allspark
import pandas as pd
import numpy as np
from sklearn_pmml_model.ensemble import PMMLForestClassifier

class MyProcessor(allspark.BaseProcessor):
    """ MyProcessor is a example
        you can send mesage like this to predict
        curl -v http://127.0.0.1:8080/api/predict/service_name -d '2.1 105'
    """

    def initialize(self):
        """ load module, executed once at the start of the service
         do service intialization and load models in this function.
        """
        self.model = PMMLForestClassifier(pmml="randomForest.pmml")

    def pre_proccess(self, data):
        """ data format pre process
        """
        x, y, z, w = data.split(b' ')
        return float(x), float(y), float(z), float(w)

    def post_process(self, data):
        """ proccess after process
        """
        return str(data).encode()

    def process(self, data):
        """ process the request data
        """
        x, y, z, w = self.pre_proccess(data)
        df = pd.DataFrame([[x, y, z, w]],columns=['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)'])
        result  = self.model.predict(df)
        print(result)
        return self.post_process(result), 200

if __name__ == '__main__':
    # paramter worker_threads indicates concurrency of processing
    runner = MyProcessor(worker_threads=10)
    runner.run()
  • 4.2 上传app.py到阿里云OSS存储,并设置权限为公共可读,获取下载地址

图片.png

  • 4.3 app.json部署文件
{
  "name": "taro_docker_v2",
  "processor_entry": "./app.py",
  "processor_type": "python",
  "processor_path": "https://taro******.oss-cn-shanghai.aliyuncs.com/eas_python_app/app.py",
  "data_image": "mubu******.cn-shanghai.cr.aliyuncs.com/taro/eas_pmml:v1",
  "metadata": {
    "instance": 1,
     "memory": 2000,
     "cpu": 1
    }
}
  • 4.4 EASCMD部署服务
./eascmd64 create demo2.json

图片.png

五、Java SDK调用服务
  • 5.1 控制台查看部署服务

图片.png

  • 5.2 POSTMAN调用测试

图片.png

图片.png

  • 5.3 pom.xml
        <dependency>
            <groupId>com.squareup.okhttp</groupId>
            <artifactId>okhttp</artifactId>
            <version>2.7.3</version>
        </dependency>
  • 5.4 Java Code
import com.squareup.okhttp.*;
import java.io.IOException;

public class EASDEMO {

    public static void main(String[] args) throws IOException {
        OkHttpClient client = new OkHttpClient();

        MediaType mediaType = MediaType.parse("application/octet-stream");
        RequestBody body = RequestBody.create(mediaType, "5.6 3.0 4.1 1.3");
        Request request = new Request.Builder()
                .url("http://172*********.cn-shanghai.pai-eas.aliyuncs.com/api/predict/taro_docker_v2")
                .post(body)
                .addHeader("authorization", "MjE2ZDNkMj*********")
                .build();

        Response response = client.newCall(request).execute();
        System.out.println(response.body().string());

    }
}
  • 5.5 测试结果

图片.png


更多参考

安装 Docker
阿里云机器学习模型在线服务自定义Processor部署PMML模型(一)
使用Python开发自定义Processor
eascmd客户端工具

相关文章
|
7月前
|
机器学习/深度学习 人工智能 算法
【AAAI 2024】再创佳绩!阿里云人工智能平台PAI多篇论文入选
阿里云人工智能平台PAI发表的多篇论文在AAAI-2024上正式亮相发表。AAAI是由国际人工智能促进协会主办的年会,是人工智能领域中历史最悠久、涵盖内容最广泛的国际顶级学术会议之一,也是中国计算机学会(CCF)推荐的A类国际学术会议。论文成果是阿里云与浙江大学、华南理工大学联合培养项目等共同研发,深耕以通用人工智能(AGI)为目标的一系列基础科学与工程问题,包括多模态理解模型、小样本类增量学习、深度表格学习和文档版面此次入选意味着阿里云人工智能平台PAI自研的深度学习算法达到了全球业界先进水平,获得了国际学者的认可,展现了阿里云人工智能技术创新在国际上的竞争力。
|
5月前
|
自然语言处理 安全 API
AppFlow:让大模型当您的微信公众号客服
使用阿里云AppFlow和通义百炼,无需编码即可将大模型如通义千问接入微信公众号。首先确保公众号已认证,然后在通义百炼导入文档创建知识库。在AppFlow中选择“微信公众号大模型自动回复”模板,添加微信凭证和百炼API密钥。配置微信公众平台的服务器地址、Token和EncodingAESKey,并设置IP白名单。完成这些步骤后,用户在公众号的提问将由大模型自动回答。AppFlow简化了集成过程,助力高效智能客服建设。
|
5月前
|
人工智能 自然语言处理 搜索推荐
大模型时代,如何让AI客服“听懂人话”、“更有温度”?
大模型时代,如何让AI客服“听懂人话”、“更有温度”?
346 1
|
7月前
|
自然语言处理 算法 OLAP
阿里云PAI大模型RAG对话系统最佳实践
本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。
|
6月前
|
机器学习/深度学习 人工智能 Java
人工智能平台PAI产品使用合集之已经通过自定义镜像部署了一个模型,想要上传并导入其他模型,该如何操作
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
5月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI使用问题之部署时是否可以自定义资源的区域
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
6月前
|
机器学习/深度学习 数据采集 人工智能
人工智能:构建自定义机器学习模型的步骤与技巧
【6月更文挑战第25天】构建自定义机器学习模型涉及明确问题、数据收集预处理、特征工程、模型选择训练、评估优化及部署监控。关键技巧包括选择适配的算法、重视数据预处理、精巧的特征工程、有效评估优化和适时的模型更新。通过这些步骤和技巧,可提升模型性能与泛化能力。
|
7月前
|
机器学习/深度学习 算法 数据处理
构建自定义机器学习模型:Scikit-learn的高级应用
【4月更文挑战第17天】本文探讨了如何利用Scikit-learn构建自定义机器学习模型,包括创建自定义估计器、使用管道集成数据处理和模型、深化特征工程以及调优与评估模型。通过继承`BaseEstimator`和相关Mixin类,用户可实现自定义算法。管道允许串联多个步骤,而特征工程涉及多项式特征和自定义变换。模型调优可借助交叉验证和参数搜索工具。掌握这些高级技巧能提升机器学习项目的效果和效率。
|
7月前
|
机器学习/深度学习 API 开发者
深入浅出:使用Python实现机器学习模型的部署
在本文中,我们将探讨如何使用Python语言将机器学习模型从开发环境迁移到生产环境的过程。与传统的技术文章摘要不同,我们不仅会概述关键步骤和常见挑战,还将引入一个简易的案例研究,通过这个案例,读者能够更直观地理解模型部署的全过程及其重要性。我们将重点讨论模型封装、API设计、容器化技术以及云服务部署等关键技术,旨在为广大开发者提供一个清晰、实用的模型部署指南。
|
7月前
|
人工智能 搜索推荐 算法
人工智能,应该如何测试?(七)大模型客服系统测试
这篇文稿讨论了企业级对话机器人的知识引擎构建,强调了仅靠大模型如 GPT 是不够的,需要专业领域的知识库。知识引擎的构建涉及文档上传、解析、拆分和特征向量等步骤。文档解析是难点,因文档格式多样,需将内容自动提取。文档拆分按语义切片,以便针对性地回答用户问题。词向量用于表示词的关联性,帮助模型理解词义关系。知识引擎构建完成后,通过语义检索模型或问答模型检索答案。测试环节涵盖文档解析的准确性、问答模型的正确率及意图识别模型的性能。整个过程包含大量模型组合和手动工作,远非简单的自动化任务。