Python 深度学习AI - 利用训练好的模型库进行图像分割、一键抠图实例演示,百度深度学习平台飞浆paddlepaddle-gpu的安装与使用

简介: Python 深度学习AI - 利用训练好的模型库进行图像分割、一键抠图实例演示,百度深度学习平台飞浆paddlepaddle-gpu的安装与使用

       

Python 深度学习AI - 图像分割

第一章:深度学习平台飞浆 paddle 的环境搭建

① 效率更高的 gpu 版本的安装

通过 python -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple来进行安装。

paddle.utils.run_check() 可以检测 paddle 的安装情况。

image.png

② 判断是否支持 gpu 版本

如果报下面的错误,说明你的显卡不支持 GPU

You are using GPU version PaddlePaddle, but there is no GPU detected on your machine. Maybe CUDA devices is not set properly.

译:

你使用的是GPU版本的PaddlePaddle,但在你的机器上没有检测到GPU。可能CUDA设备设置不正确。

UserWarning: You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default.

译:

用户警告:你正在使用GPU版本的飞桨,但是你的CUDA设备没有正确设置。默认使用CPU设备。

③ 退而求其次,普通版本的安装

那就用下面的命令进行卸载:

python -m pip uninstall paddlepaddle-gpu

卸载后再安装 cpu 版本的:

python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

不卸载也可以,上面说会默认使用 cpu 的,也可以正常用,只是不能体验 cpu 的速度了。

④ paddlehub 的安装

然后是安装 paddlehub 了,我们将要用到的训练模型就来自于 paddlehub

python -m pip install paddlehub -i https://mirror.baidu.com/pypi/simple

Successfully installed Babel-2.9.1 Flask-Babel-2.0.0  Jinja2-3.0.1 MarkupSafe-2.0.1 Werkzeug-2.0.1  backports.entry-points-selectable-1.1.0 bce-python-sdk-0.8.61 cfgv-3.3.0  click-8.0.1 colorama-0.4.4 colorlog-5.0.1 cycler-0.10.0 dill-0.3.4  distlib-0.3.2 easydict-1.9 filelock-3.0.12 flake8-3.9.2 flask-2.0.1  gitdb-4.0.7 gitpython-3.1.18 h5py-3.3.0 identify-2.2.11  itsdangerous-2.0.1 jieba-0.42.1 joblib-1.0.1 kiwisolver-1.3.1  matplotlib-3.4.2 mccabe-0.6.1 multiprocess-0.70.12.2 nodeenv-1.6.0  opencv-python-4.5.3.56 packaging-21.0 paddle2onnx-0.7 paddlehub-2.1.0  paddlenlp-2.0.6 pandas-1.3.0 platformdirs-2.0.2 pre-commit-2.13.0  pycodestyle-2.7.0 pycryptodome-3.10.1 pyflakes-2.3.1 pyparsing-2.4.7  python-dateutil-2.8.2 pytz-2021.1 pyyaml-5.4.1 pyzmq-22.1.0 rarfile-4.0  scikit-learn-0.24.2 scipy-1.7.0 seqeval-1.2.2 shellcheck-py-0.7.2.1  smmap-4.0.0 threadpoolctl-2.2.0 toml-0.10.2 tqdm-4.61.2  virtualenv-20.6.0 visualdl-2.2.0`

第二章:调用训练好的库进行图像分割效果演示

① 演示一:ace2p 模型

下面这是原图,接下来演示下不同模型分割图像的效果图。

image.png

这个分割的效果看着还可以。

import paddlehub as hub
seg = hub.Module(name='ace2p')
path = './image/baozi.jpg'
seg.segmentation(paths=[path],visualization=True, output_dir="./image")

每次加载新的模型会下载对应的模型。

image.png

image.png

② 演示二:humanseg_server 模型

下面腿部识别的不是很好。

import paddlehub as hub
seg = hub.Module(name='humanseg_server')
path = './image/baozi.jpg'
seg.segment(paths=[path],visualization=True, output_dir="./image")

image.png

③ 演示三:deeplabv3p_xception65_humanseg 模型

主要训练的模型都是人类图像,所以这个豹子的识别效果差了一些,更多的需要大家自己来尝试了。

import paddlehub as hub
seg = hub.Module(name='deeplabv3p_xception65_humanseg')
path = './image/baozi.jpg'
seg.segmentation(paths=[path],visualization=True, output_dir="./image")

image.png

喜欢的点个赞❤吧!


相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
3月前
|
人工智能 中间件 数据库
沐曦 GPU 融入龙蜥,共筑开源 AI 基础设施新底座
沐曦自加入社区以来,一直与龙蜥社区在推动 AIDC OS 的开源社区建设等方面保持合作。
|
5月前
|
存储 机器学习/深度学习 人工智能
GPU云存储性能:加速AI与高性能计算的关键
在人工智能(AI)、机器学习(ML)和高性能计算(HPC)飞速发展的今天,数据存储和处理的效率已成为决定项目成败的关键因素。传统的云存储方案往往无法满足GPU密集型工作负载的需求,而GPU云存储性能的优化正成为企业提升计算效率、降低延迟的核心突破口。本文将深入探讨GPU云存储性能的重要性、关键技术及优化策略,助您在数据驱动的竞争中占据先机。
|
9月前
|
人工智能 并行计算 Linux
斯坦福黑科技让笔记本GPU也能玩转AI视频生成!FramePack:压缩输入帧上下文长度!仅需6GB显存即可生成高清动画
斯坦福大学推出的FramePack技术通过压缩输入帧上下文长度,解决视频生成中的"遗忘"和"漂移"问题,仅需6GB显存即可在普通笔记本上实时生成高清视频。
2346 19
斯坦福黑科技让笔记本GPU也能玩转AI视频生成!FramePack:压缩输入帧上下文长度!仅需6GB显存即可生成高清动画
|
4月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
605 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
3月前
|
人工智能 并行计算 PyTorch
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
341 4
|
5月前
|
存储 人工智能 编解码
阿里云GPU云服务器深度评测:算力怪兽如何重塑AI与图形处理的未来?
在AI与高性能计算需求激增的今天,传统CPU已难满足“暴力计算”需求。阿里云GPU云服务器依托NVIDIA顶级显卡算力,结合专为GPU优化的神行工具包(DeepGPU),为深度学习、科学计算、图形渲染等领域提供高效、弹性的算力支持。本文全面解析其产品优势、工具链及六大真实应用场景,助你掌握AI时代的算力利器。
阿里云GPU云服务器深度评测:算力怪兽如何重塑AI与图形处理的未来?
|
4月前
|
机器学习/深度学习 人工智能 容灾
硅谷GPU云托管:驱动AI革命的下一代计算基石
在人工智能与高性能计算席卷全球的今天,硅谷作为科技创新的心脏,正通过GPU云托管服务重新定义计算能力的边界。无论您是初创公司的机器学习工程师,还是跨国企业的研究团队,硅谷GPU云托管已成为实现突破性创新的关键基础设施。
|
6月前
|
人工智能 运维 Serverless
GPU 降成本免运维,睿观 AI 助手选择函数计算
从跨境电商 ERP 到“睿观 AI 助手”,阿里云函数计算的支持下,深圳三态股份利用 AI 技术快速完成专利、商标、版权等多维度的侵权风险全面扫描。结合函数计算实现弹性算力支持,降低成本并提升效率,实现业务的快速发展。
|
8月前
|
人工智能 并行计算 开发者
CUDA重大更新:原生Python可直接编写高性能GPU程序
NVIDIA在2025年GTC大会上宣布CUDA并行计算平台正式支持原生Python编程,消除了Python开发者进入GPU加速领域的技术壁垒。这一突破通过重新设计CUDA开发模型,引入CUDA Core、cuPyNumeric、NVMath Python等核心组件,实现了Python与GPU加速的深度集成。开发者可直接用Python语法进行高性能并行计算,显著降低门槛,扩展CUDA生态,推动人工智能、科学计算等领域创新。此更新标志着CUDA向更包容的语言生态系统转型,未来还将支持Rust、Julia等语言。
651 3
CUDA重大更新:原生Python可直接编写高性能GPU程序

热门文章

最新文章

推荐镜像

更多