Elasticsearch构建商品搜索系统

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: Elasticsearch构建商品搜索系统

搜索这个特性可以说是无处不在,现在很少有网站或者系统不提供搜索功能了,所以,即使你不是一个专业做搜索的程序员,也难免会遇到一些搜索相关的需求。搜索这个东西,表面上看功能很简单,就是一个搜索框,输入关键字,然后搜出来想要的内容就好了。


搜索背后的实现,可以非常简单,简单到什么程度呢?我们就用一个SQL,LIKE一下就能实现;也可以很复杂,复杂到什么程度呢?不说百度谷歌这种专业做搜索的公司,其他非专业做搜索的互联网大厂,搜索团队大多是千人规模,这里面不仅有程序员,还有算法工程师、业务专家等等。二者的区别也仅仅是,搜索速度的快慢以及搜出来的内容好坏而已。


今天这节课,我们就以电商中的商品搜索作为例子,来讲一下,如何用ES(Elasticsearch)来快速、低成本地构建一个体验还不错的搜索系统。


理解倒排索引机制

刚刚我们说了,既然我们的数据大多都是存在数据库里,用SQL的LIKE也能实现匹配,也能搜出结果,为什么还要专门做一套搜索系统呢?我先来和你分析一下,为什么数据库不适合做搜索。


搜索的核心需求是全文匹配,对于全文匹配,数据库的索引是根本派不上用场的,那只能全表扫描。全表扫描已经非常慢了,这还不算,还需要在每条记录上做全文匹配,也就是一个字一个字的比对,这个速度就更慢了。所以,使用数据来做搜索,性能上完全没法满足要求。


那ES是怎么来解决搜索问题的呢?我们来举个例子说明一下,假设我们有这样两个商品,一个是烟台红富士苹果,一个是苹果手机iPhone XS Max。


这个表里面的DOCID就是唯一标识一条记录的ID,和数据库里面的主键是类似的。


为了能够支持快速地全文搜索,ES中对于文本采用了一种特殊的索引:倒排索引(Inverted Index)。那我们看一下在ES中,这两条商品数据倒排索引长什么样?请看下面这个表。


可以看到,这个倒排索引的表,它是以单词作为索引的Key,然后每个单词的倒排索引的值是一个列表,这个列表的元素就是含有这个单词的商品记录的DOCID。


这个倒排索引怎么构建的呢?当我们往ES写入商品记录的时候,ES会先对需要搜索的字段,也就是商品标题进行分词。分词就是把一段连续的文本按照语义拆分成多个单词。然后ES按照单词来给商品记录做索引,就形成了上面那个表一样的倒排索引。


当我们搜索关键字“苹果手机”的时候,ES会对关键字也进行分词,比如说,“苹果手机”被分为“苹果”和“手机”。然后,ES会在倒排索引中去搜索我们输入的每个关键字分词,搜索结果应该是:


666和888这两条记录都能匹配上搜索的关键词,但是888这个商品比666这个商品匹配度更高,因为它两个单词都能匹配上,所以按照匹配度把结果做一个排序,最终返回的搜索结果就是:


苹果Apple iPhone XS Max (A2104) 256GB 金色 移动联通电信4G手机双卡双待


烟台红富士苹果5kg 一级铂金大果 单果230g以上 新鲜水果


看起来搜索的效果还是不错的。


为什么倒排索引可以做到快速搜索?我和你一起来分析一下上面这个例子的查找性能。


这个搜索过程,其实就是对上面的倒排索引做了二次查找,一次找“苹果”,一次找“手机”。注意,整个搜索过程中,我们没有做过任何文本的模糊匹配。ES的存储引擎存储倒排索引时,肯定不是像我们上面表格中展示那样存成一个二维表,实际上它的物理存储结构和MySQL的InnoDB的索引是差不多的,都是一颗查找树。


对倒排索引做两次查找,也就是对树进行二次查找,它的时间复杂度,类似于MySQL中的二次命中索引的查找。显然,这个查找速度,比用MySQL全表扫描加上模糊匹配的方式,要快好几个数量级。


如何在ES中构建商品的索引?

理解了倒排索引的原理之后,我们一起用ES构建一个商品索引,简单实现一个商品搜索系统。虽然ES是为搜索而生的,但本质上,它仍然是一个存储系统。ES里面的一些概念,基本上都可以在关系数据库中找到对应的名词,为了便于你快速理解这些概念,我把这些概念的对应关系列出来,你可以对照理解。


在ES里面,数据的逻辑结构类似于MongoDB,每条数据称为一个DOCUMENT,简称DOC。DOC就是一个JSON对象,DOC中的每个JSON字段,在ES中称为FIELD,把一组具有相同字段的DOC存放在一起,存放它们的逻辑容器叫INDEX,这些DOC的JSON结构称为MAPPING。这里面最不好理解的就是这个INDEX,它实际上类似于MySQL中表的概念,而不是我们通常理解的用于查找数据的索引。


ES是一个用Java开发的服务端程序,除了Java以外就没有什么外部依赖了,安装部署都非常简单,具体你可以参照它的官方文档先把ES安装好。我们这个示例中,使用的ES版本是目前的最新版本7.6。


另外,为了能让ES支持中文分词,需要给ES安装一个中文的分词插件IK Analysis for Elasticsearch,这个插件的作用就是告诉ES怎么对中文文本进行分词。


你可以直接执行下面的命令自动下载并安装:


$elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.6.0/elasticsearch-analysis-ik-7.6.0.zip

安装完成后,需要重启ES,验证一下是否安装成功:


curl -X POST “localhost:9200/_analyze?pretty” -H ‘Content-Type: application/json’ -d ‘{ “analyzer”: “ik_smart”, “text”: “极客时间” }’

{undefined

“tokens” : [

{undefined

“token” : “极”,

“start_offset” : 0,

“end_offset” : 1,

“type” : “CN_CHAR”,

“position” : 0

},

{undefined

“token” : “客”,

“start_offset” : 1,

“end_offset” : 2,

“type” : “CN_CHAR”,

“position” : 1

},

{undefined

“token” : “时间”,

“start_offset” : 2,

“end_offset” : 4,

“type” : “CN_WORD”,

“position” : 2

}

]

}

可以看到,这个分词器把“极客时间”分成了“极”、“客”和“时间”,没认出来“极客”这个词,还是有改进空间的。


为了能实现商品搜索,我们需要先把商品信息存放到ES中,首先我们先定义存放在ES中商品的数据结构,也就是MAPPING。


我们这个MAPPING只要两个字段就够了,sku_id就是商品ID,title保存商品的标题,当用户在搜索商品的时候,我们在ES中来匹配商品标题,返回符合条件商品的sku_id列表。ES默认提供了标准的RESTful接口,不需要客户端,直接使用HTTP协议就可以访问,这里我们使用curl通过命令行来操作ES。


接下来我们使用上面这个MAPPING创建INDEX,类似于MySQL中创建一个表。


curl -X PUT “localhost:9200/sku” -H ‘Content-Type: application/json’ -d ‘{undefined

“mappings”: {undefined

“properties”: {undefined

“sku_id”: {undefined

“type”: “long”

},

“title”: {undefined

“type”: “text”,

“analyzer”: “ik_max_word”,

“search_analyzer”: “ik_max_word”

}

}

}

}’

{“acknowledged”:true,“shards_acknowledged”:true,“index”:“sku”}

这里面,使用PUT方法创建一个INDEX,INDEX的名称是“sku”,直接写在请求的URL中。请求的BODY是一个JSON对象,内容就是我们上面定义的MAPPING,也就是数据结构。这里面需要注意一下,由于我们要在title这个字段上进行全文搜索,所以我们把数据类型定义为text,并指定使用我们刚刚安装的中文分词插件IK作为这个字段的分词器。


创建好INDEX之后,就可以往INDEX中写入商品数据,插入数据需要使用HTTP POST方法:


curl -X POST “localhost:9200/sku/_doc/” -H ‘Content-Type: application/json’ -d ‘{undefined

“sku_id”: 100002860826,

“title”: “烟台红富士苹果 5kg 一级铂金大果 单果230g以上 新鲜水果”

}’

{"_index":“sku”,"_type":"_doc","_id":“yxQVSHABiy2kuAJG8ilW”,"_version":1,“result”:“created”,"_shards":{“total”:2,“successful”:1,“failed”:0},"_seq_no":0,"_primary_term":1}


curl -X POST “localhost:9200/sku/_doc/” -H ‘Content-Type: application/json’ -d ‘{undefined

“sku_id”: 100000177760,

“title”: “苹果 Apple iPhone XS Max (A2104) 256GB 金色 移动联通电信4G手机 双卡双待”

}’

{"_index":“sku”,"_type":"_doc","_id":“zBQWSHABiy2kuAJGgim1”,"_version":1,“result”:“created”,"_shards":{“total”:2,“successful”:1,“failed”:0},"_seq_no":1,"_primary_term":1}

这里面我们插入了两条商品数据,一个烟台红富士,一个iPhone手机。然后就可以直接进行商品搜索了,搜索使用HTTP GET方法。


curl -X GET ‘localhost:9200/sku/_search?pretty’ -H ‘Content-Type: application/json’ -d ‘{undefined

“query” : { “match” : { “title” : “苹果手机” }}

}’

{undefined

“took” : 23,

“timed_out” : false,

“_shards” : {undefined

“total” : 1,

“successful” : 1,

“skipped” : 0,

“failed” : 0

},

“hits” : {undefined

“total” : {undefined

“value” : 2,

“relation” : “eq”

},

“max_score” : 0.8594865,

“hits” : [

{undefined

“_index” : “sku”,

“_type” : “_doc”,

“_id” : “zBQWSHABiy2kuAJGgim1”,

“_score” : 0.8594865,

“_source” : {undefined

“sku_id” : 100000177760,

“title” : “苹果 Apple iPhone XS Max (A2104) 256GB 金色 移动联通电信4G手机 双卡双待”

}

},

{undefined

“_index” : “sku”,

“_type” : “_doc”,

“_id” : “yxQVSHABiy2kuAJG8ilW”,

“_score” : 0.18577608,

“_source” : {undefined

“sku_id” : 100002860826,

“title” : “烟台红富士苹果 5kg 一级铂金大果 单果230g以上 新鲜水果”

}

}

]

}

}

我们先看一下请求中的URL,其中的“sku”代表要在sku这个INDEX内进行查找,“_search”是一个关键字,表示要进行搜索,参数pretty表示格式化返回的JSON,这样方便阅读。再看一下请求BODY的JSON,query中的match表示要进行全文匹配,匹配的字段就是title,关键字是“苹果手机”。


可以看到,在返回结果中,匹配到了2条商品记录,和我们在前面讲解倒排索引时,预期返回的结果是一致的。


我们来回顾一下使用ES构建商品搜索服务的这个过程:首先安装ES并启动服务,然后创建一个INDEX,定义MAPPING,写入数据后,执行查询并返回查询结果,其实,这个过程和我们使用数据库时,先建表、插入数据然后查询的过程,就是一样的。所以,你就把ES当做一个支持全文搜索的数据库来使用就行了。


小结

ES本质上是一个支持全文搜索的分布式内存数据库,特别适合用于构建搜索系统。ES之所以能有非常好的全文搜索性能,最重要的原因就是采用了倒排索引。倒排索引是一种特别为搜索而设计的索引结构,倒排索引先对需要索引的字段进行分词,然后以分词为索引组成一个查找树,这样就把一个全文匹配的查找转换成了对树的查找,这是倒排索引能够快速进行搜索的根本原因。


但是,倒排索引相比于一般数据库采用的B树索引,它的写入和更新性能都比较差,因此倒排索引也只是适合全文搜索,不适合更新频繁的交易类数据。


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
24天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
156 3
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
10天前
|
人工智能 自然语言处理 搜索推荐
云端问道12期实操教学-构建基于Elasticsearch的企业级AI搜索应用
本文介绍了构建基于Elasticsearch的企业级AI搜索应用,涵盖了从传统关键词匹配到对话式问答的搜索形态演变。阿里云的AI搜索产品依托自研和开源(如Elasticsearch)引擎,提供高性能检索服务,支持千亿级数据毫秒响应。文章重点描述了AI搜索的三个核心关键点:精准结果、语义理解、高性能引擎,并展示了架构升级和典型应用场景,包括智能问答、电商导购、多模态图书及商品搜索等。通过实验部分,详细演示了如何使用阿里云ES搭建AI语义搜索Demo,涵盖模型创建、Pipeline配置、数据写入与检索测试等步骤,同时介绍了相关的计费模式。
|
10天前
|
人工智能 算法 API
构建基于 Elasticsearch 的企业级 AI 搜索应用
本文介绍了基于Elasticsearch构建企业级AI搜索应用的方案,重点讲解了RAG(检索增强生成)架构的实现。通过阿里云上的Elasticsearch AI搜索平台,简化了知识库文档抽取、文本切片等复杂流程,并结合稠密和稀疏向量的混合搜索技术,提升了召回和排序的准确性。此外,还探讨了Elastic的向量数据库优化措施及推理API的应用,展示了如何在云端高效实现精准的搜索与推理服务。未来将拓展至多模态数据和知识图谱,进一步提升RAG效果。
|
1月前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
146 2
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
21天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。
105 5
|
1月前
|
存储 人工智能 API
(Elasticsearch)使用阿里云 infererence API 及 semantic text 进行向量搜索
本文展示了如何使用阿里云 infererence API 及 semantic text 进行向量搜索。
|
1月前
|
搜索推荐 API 定位技术
一文看懂Elasticsearch的技术架构:高效、精准的搜索神器
Elasticsearch 是一个基于 Lucene 的开源搜索引擎,以其强大的全文本搜索功能和快速的倒排索引技术著称。它不仅支持数字、文本、地理位置等多类型数据,还提供了可调相关度分数、高级查询 DSL 等功能。Elasticsearch 的核心技术流程包括数据导入、解析、索引化、查询处理、得分计算及结果返回,确保高效处理大规模数据并提供准确的搜索结果。通过 RESTful API、Logstash 和 Filebeat 等工具,Elasticsearch 可以从多种数据源中导入和解析数据,支持复杂的查询需求。
120 0
|
2月前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
67 6
|
2月前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
62 1
|
2月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
88 5

热门文章

最新文章