Java对象的序列化/反序列化原理及源码解析(中)

简介: Java对象的序列化/反序列化原理及源码解析(中)

writeNonProxy()方法中会按照以下几个过程来写入数据:

  1. 调用writeUTF()方法写入对象所属类的名字,对于本例中name = com.sss.test.对于writeUTF()这个方法,在写入实际的数据之前会先写入name的字节数,代码如下:
void writeUTF(String s, long utflen) throws IOException {
        if (utflen > 0xFFFFL) {
            throw new UTFDataFormatException();
        }
        // 写入两个字节的s的长度
        writeShort((int) utflen);
        if (utflen == (long) s.length()) {
            writeBytes(s);
        } else {
            writeUTFBody(s);
        }
    }
  1. 接下来会调用writeLong()方法写入类的序列号UID,UID是通过getSerialVersionUID()方法来获取。
  2. 接着会判断被序列化的对象所属类的flag,并写入底层字节容器中(占用两个字节)。类的flag分为以下几类:
  3. final static byte SC_EXTERNALIZABLE = 0×04;表示该类为Externalizable类,即实现了Externalizable接口。

final static byte SC_SERIALIZABLE = 0×02;表示该类实现了Serializable接口。

final static byte SC_WRITE_METHOD = 0×01;表示该类实现了Serializable接口且自定义了writeObject()方法。

final static byte SC_ENUM = 0×10;表示该类是个Enum类型。

对于本例中flag = 0×02表示只是Serializable类型。

依次写入被序列化对象的字段的元数据。

<1> 首先会写入被序列化对象的字段的个数,占用两个字节。本例中为2,因为TestObject类中只有两个字段,一个是int类型的testValue,一个是InnerObject类型的innerValue。

<2> 依次写入每个字段的元数据。每个单独的字段由ObjectStreamField类来表示。

1.写入字段的类型码,占一个字节。 类型码的映射关系如下

3.png

调用writeUTF()方法写入每个字段的名字。注意,writeUTF()方法会先写入名字占用的字节数。

3.如果被写入的字段不是基本类型,则会接着调用writeTypeString()方法写入代表对象或者类的类型字符串,该方法需要一个参数,表示对应的类或者接口的字符串,最终调用的还是writeString()方法,实现如下

private void writeString(String str, boolean unshared) throws IOException {
    handles.assign(unshared ? null : str);
    long utflen = bout.getUTFLength(str);
    if (utflen <= 0xFFFF) {
        // final static byte TC_STRING = (byte)0x74;
        // 表示接下来的字节表示一个字符串
        bout.writeByte(TC_STRING);
        bout.writeUTF(str, utflen);
    } else {
        bout.writeByte(TC_LONGSTRING);
        bout.writeLongUTF(str, utflen);
    }
}

在这个方法中会先写入一个标志位TC_STRING表示接下来的数据是一个字符串,接着会调用writeUTF()写入字符串。

执行完上面的过程之后,程序流程重新回到writeNonProxyDesc()方法中

private void writeNonProxyDesc(ObjectStreamClass desc, boolean unshared)
    throws IOException
{
    // 其他省略代码
    // TC_ENDBLOCKDATA = (byte)0x78;
    // 表示对一个object的描述块的结束
    bout.writeByte(TC_ENDBLOCKDATA);
    writeClassDesc(desc.getSuperDesc(), false); // 尾递归调用,写入父类的类元数据
}

接下来会写入一个字节的标志位TC_ENDBLOCKDATA表示对一个object的描述块的结束。


然后会调用writeClassDesc()方法,传入父类的ObjectStreamClass对象,写入父类的类元数据。


需要注意的是writeClassDesc()这个方法是个递归调用,调用结束返回的条件是没有了父类,即传入的ObjectStreamClass对象为null,这个时候会写入一个字节的标识位TC_NULL.


在递归调用完成写入类的类元数据之后,程序执行流程回到wriyeOrdinaryObject()方法中,

private void writeOrdinaryObject(Object obj,
                                 ObjectStreamClass desc,
                                 boolean unshared) throws IOException
{
    // 其他省略代码
    try {
        desc.checkSerialize();
        // 其他省略代码
        if (desc.isExternalizable() && !desc.isProxy()) {
            writeExternalData((Externalizable) obj);
        } else {
            writeSerialData(obj, desc); // 写入被序列化的对象的实例数据
        }
    } finally {
        if (extendedDebugInfo) {
            debugInfoStack.pop();
        }
    }
}

从上面的分析中我们可以知道,当写入类的元数据的时候,是先写子类的类元数据,然后递归调用的写入父类的类元数据。

接下来会调用writeSerialData()方法写入被序列化的对象的字段的数据,方法实现如下:

private void writeSerialData(Object obj, ObjectStreamClass desc)
    throws IOException
{
    // 获取表示被序列化对象的数据的布局的ClassDataSlot数组,父类在前
    ObjectStreamClass.ClassDataSlot[] slots = desc.getClassDataLayout();
    for (int i = 0; i < slots.length; i++) {
        ObjectStreamClass slotDesc = slots[i].desc;
        if (slotDesc.hasWriteObjectMethod()) {
           // 如果被序列化对象自己实现了writeObject()方法,则执行if块里的代码
           // 一些省略代码
        } else {
            // 调用默认的方法写入实例数据
            defaultWriteFields(obj, slotDesc);
        }
    }
}

在这个方法中首先会调用getClassDataSlot()方法获取被序列化对象的数据的布局,关于这个方法官方文档中说明如下:

/**
 * Returns array of ClassDataSlot instances representing the data layout
 * (including superclass data) for serialized objects described by this
 * class descriptor.  ClassDataSlots are ordered by inheritance with those
 * containing "higher" superclasses appearing first.  The final
 * ClassDataSlot contains a reference to this descriptor.
 */
 ClassDataSlot[] getClassDataLayout() throws InvalidClassException;

需要注意的是这个方法会把从父类继承的数据一并返回,并且表示从父类继承的数据的ClassDataSlot对象在数组的最前面。

对于没有自定义writeObject()方法的对象来说,接下来会调用defaultWriteFields()方法写入数据,该方法实现如下:

private void defaultWriteFields(Object obj, ObjectStreamClass desc)
    throws IOException
{
    // 其他一些省略代码
    int primDataSize = desc.getPrimDataSize();
    if (primVals == null || primVals.length < primDataSize) {
        primVals = new byte[primDataSize];
    }
    // 获取对应类中的基本数据类型的数据并保存在primVals字节数组中
    desc.getPrimFieldValues(obj, primVals);
    // 把基本数据类型的数据写入底层字节容器中
    bout.write(primVals, 0, primDataSize, false);
    // 获取对应类的所有的字段对象
    ObjectStreamField[] fields = desc.getFields(false);
    Object[] objVals = new Object[desc.getNumObjFields()];
    int numPrimFields = fields.length - objVals.length;
    // 把对应类的Object类型(非原始类型)的对象保存到objVals数组中
    desc.getObjFieldValues(obj, objVals);
    for (int i = 0; i < objVals.length; i++) {
        // 一些省略的代码
        try {
            // 对所有Object类型的字段递归调用writeObject0()方法写入对应的数据
            writeObject0(objVals[i],
                         fields[numPrimFields + i].isUnshared());
        } finally {
            if (extendedDebugInfo) {
                debugInfoStack.pop();
            }
        }
    }
}

可以看到,在这个方法中会做下面几件事情:


<1> 获取对应类的基本类型的字段的数据,并写入到底层的字节容器中。

<2> 获取对应类的Object类型(非基本类型)的字段成员,递归调用writeObject0()方法写入相应的数据。


从上面对写入数据的分析可以知道,写入数据是是按照先父类后子类的顺序来写的。


至此,Java序列化过程分析完毕,总结一下,在本例中序列化过程如下:

4.png

现在可以来分析下第二步中写入的temp.out文件的内容了。

aced        Stream Magic
0005        序列化版本号
73          标志位:TC_OBJECT,表示接下来是个新的Object
72          标志位:TC_CLASSDESC,表示接下来是对Class的描述
0020        类名的长度为32
636f 6d2e 6265 6175 7479 626f 7373 2e73 com.beautyboss.s
6c6f 6765 6e2e 5465 7374 4f62 6a65 6374 logen.TestObject
d3c6 7e1c 4f13 2afe 序列号
02          flag,可序列化
00 02       TestObject的字段的个数,为2
49          TypeCode,I,表示int类型
0009        字段名长度,占9个字节
7465 7374 5661 6c75 65      字段名:testValue
4c          TypeCode:L,表示是个Class或者Interface
000b        字段名长度,占11个字节
696e 6e65 724f 626a 6563 74 字段名:innerObject
74          标志位:TC_STRING,表示后面的数据是个字符串
0023        类名长度,占35个字节
4c63 6f6d 2f62 6561 7574 7962 6f73 732f  Lcom/beautyboss/
736c 6f67 656e 2f49 6e6e 6572 4f62 6a65  slogen/InnerObje
6374 3b                                  ct;
78          标志位:TC_ENDBLOCKDATA,对象的数据块描述的结束

接下来开始写入数据,从父类Parent开始

0000 0064 parentValue的值:100
0000 012c testValue的值:300

接下来是写入InnerObject的类元信息

73 标志位,TC_OBJECT:表示接下来是个新的Object
72 标志位,TC_CLASSDESC:表示接下来是对Class的描述
0021 类名的长度,为33
636f 6d2e 6265 6175 7479 626f 7373 com.beautyboss
2e73 6c6f 6765 6e2e 496e 6e65 724f .slogen.InnerO
626a 6563 74 bject
4f2c 148a 4024 fb12 序列号
02 flag,表示可序列化
0001 字段个数,1个
49 TypeCode,I,表示int类型
00 0a 字段名长度,10个字节
69 6e6e 6572 5661 6c75 65 innerValue
78 标志位:TC_ENDBLOCKDATA,对象的数据块描述的结束
70 标志位:TC_NULL,Null object reference.
0000 00c8 innervalue的值:200

##3. 反序列化:readObject()

反序列化过程就是按照前面介绍的序列化算法来解析二进制数据。


有一个需要注意的问题就是,如果子类实现了Serializable接口,但是父类没有实现Serializable接口,这个时候进行反序列化会发生什么情况?


答:如果父类有默认构造函数的话,即使没有实现Serializable接口也不会有问题,反序列化的时候会调用默认构造函数进行初始化,否则的话反序列化的时候会抛出.InvalidClassException:异常,异常原因为no valid constructor。


目录
相关文章
|
4月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
251 1
|
4月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
267 1
|
8月前
|
存储 Java 编译器
说一说关于序列化/反序列化中的细节问题
我是小假 期待与你的下一次相遇 ~
147 1
|
8月前
|
JSON Java 数据库连接
|
9月前
|
存储 安全 IDE
说一说序列化与反序列化中存在的问题
本文详细解析了Java中的序列化机制,包括序列化的概念、实现方式及应用场景。通过Student类的实例演示了对象的序列化与反序列化过程,并分析了`Serializable`接口的作用以及`serialVersionUID`的重要意义。此外,文章还探讨了如何通过自定义`readObject()`方法增强序列化的安全性,以及解决可序列化单例模式中可能产生的多实例问题。最后提供了代码示例和运行结果,帮助读者深入理解序列化的原理与实践技巧。
234 2
|
9月前
|
JSON JavaScript 前端开发
Go语言JSON 序列化与反序列化 -《Go语言实战指南》
本文介绍了 Go 语言中使用 `encoding/json` 包实现 JSON 与数据结构之间的转换。内容涵盖序列化(`Marshal`)和反序列化(`Unmarshal`),包括基本示例、结构体字段标签的使用、控制字段行为的标签(如 `omitempty` 和 `-`)、处理 `map` 和切片、嵌套结构体序列化、反序列化未知结构(使用 `map[string]interface{}`)以及 JSON 数组的解析。最后通过表格总结了序列化与反序列化的方法及类型要求,帮助开发者快速掌握 JSON 数据处理技巧。
|
11月前
|
传感器 人工智能 监控
反向寻车系统怎么做?基本原理与系统组成解析
本文通过反向寻车系统的核心组成部分与技术分析,阐述反向寻车系统的工作原理,适用于适用于商场停车场、医院停车场及火车站停车场等。如需获取智慧停车场反向寻车技术方案前往文章最下方获取,如有项目合作及技术交流欢迎私信作者。
884 2
|
11月前
|
存储 设计模式 Java
重学Java基础篇—ThreadLocal深度解析与最佳实践
ThreadLocal 是一种实现线程隔离的机制,为每个线程创建独立变量副本,适用于数据库连接管理、用户会话信息存储等场景。
398 5
|
11月前
|
机器学习/深度学习 人工智能 Java
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
697 3
|
存储 Java
Java的对象和类的相同之处和不同之处
在 Java 中,对象和类是面向对象编程的核心。
210 19

热门文章

最新文章

推荐镜像

更多
  • DNS