Drug Target Review | 人工智能(AI)在基因组学中的作用

简介: Drug Target Review | 人工智能(AI)在基因组学中的作用

人工智能在包括基因组学在内的许多研究领域中都有应用。阿斯利康(AstraZeneca)的斯拉夫·彼得罗夫斯基(SlavéPetrovski)揭示了如何在人类基因组研究中使用AI及其在未来的发展。

  image.png

基因组学领域产生了大型数据集,可用于发现和开发潜在的新疗法。人工智能(AI)在此研究领域中具有很高的价值,因为它可以加快从信息获取知识所需的时间。


Drug Target Review的Victoria Rees与阿斯利康基因组研究中心(CGR)的基因组分析和信息学负责人SlavéPetrovski进行了交谈,以了解AI在这一领域的使用方式。Petrovski将AI定义为“利用先进的分析方法来挖掘复杂的数据类型”,从而可以识别其他难以捉摸的模式。最终,他说AI可以用来推动“从数据到知识的发展”。


基因组学中使用AI

Petrovski首先解释说,该领域内AI的用途广泛。构成人类基因组的大约30亿个碱基对可以通过AI进行分析,以找到遗传变异。下一步是确定置入不同数据的置信度,以决定其是否代表生物学遗传变异。


他继续说道,“通常使用AI来帮助研究者更好地了解与遗传变异有关的生物学。” 这意味着AI的结果可用于确定变异是否良性或是否具有临床意义,应进一步研究。


使用AI的挑战

尽管AI是非常有用的工具,但它并非没有挑战。Petrovski认为,基因组学中AI的关键问题是规模-随着生成的基因组学数据量呈指数级增长。


他介绍了阿斯利康公司全公司的基因组计划如何旨在到2026年分析多达200万个基因组的计划。这项为期10年的计划包括必须准确、安全地存储来自临床试验的数十万个患者数据点。


但是,彼得罗夫斯基也看到了这一好处。“当达到如此规模时,它将带来巨大的机会,因为数据显然有价值,并且可以支持诸如AI和机器学习之类的高级方法。”


尽管拥有基础结构和资源来应对大型数据集并进行有效挖掘存在挑战,但如果管理得当,则可以解决此问题。


基因组AI的主要趋势

彼得罗夫斯基解释说,在基因组学中,人工智能的使用目前存在多种趋势。


整体方法


使用AI的一种方法是将基因组分析产生的数据与文献中确定的关系结合起来,以帮助寻找潜在的临床相关基因。


彼得罗夫斯基说,这是一个令人感兴趣的领域,因为它减少了单个研究人员的影响,而不是使用一组标准信息客观地找到与疾病表型有关的基因。他还强调说,这使研究人员能够发现新的领域,专注于围绕这些靶标的药物发现和开发,从而满足临床需求。


他着重介绍了由阿斯利康进行的一项关键研究,该研究提出了一个多维机器学习框架,其中考虑了52个信息层,包括基因表达、人类疾病文献和小鼠表型。该方法被提议为“客观和定量地分类潜在的新型疾病靶基因的支持框架。”


高质量数据


基因组AI的另一个重点是数据的增强。Petrovski指出,这一领域正在“不断发展”,但主要观察到的是,所采用的方法通常不如基础数据那么重要。这意味着输入到AI系统中的信息必须是高质量的,否则无法充分利用。


他解释说,在他的公司中,他们的目标是使数据“公平”。意味着它是可发现,可访问,可互操作和可重用的。公司的一项大型活动鼓励研究人员处理数据并将其应用于高级分析。尽管AI可能是一种处理信息的高级方法,但是如果没有高质量的数据集,那么奖励将不会出现。

image.png

分层研究


Petrovski观察到的另一趋势是,在基因组学中使用AI可以扩展到不同的组学研究中,例如转录组学,即将遗传密码转录成信使RNA。


根据Petrovski的说法,这种方法使研究人员能够从“一维视图转变为能够将多个维度放在一起,从而提供人类基因组的整体图”。因此,人工智能在基因组学中的主要趋势包括整体方法和利用人工智能挖掘文献,高度重视数据质量并使用许多研究来分层信息。


确定治疗靶标


Petrovski解释说,人工智能在基因组学中的应用使研究人员可以对病例种群进行测序,以确定感兴趣的表型。这些可用于识别新型药物靶标。


彼得罗夫斯基描述说,通过研究原始基因组序列数据并应用最先进的深度学习和卷积网络,“先进的方法可以从原始数据中提取更多的价值”,而不是人类的解释。改善分析数据的方式可以成为推导识别药物靶标所需结果的有用工具。


阿斯利康(AstraZeneca)与纽约哥伦比亚大学(Columbia University)合作,于今年早些时候发表了一篇研究慢性肾脏疾病的论文。研究人员在总共3,315名患者的两个队列中进行了外显子组测序和诊断分析,发现了大量(约占9%)患者的潜在致病基因变异。结果为这种病的遗传原因和治疗机会提供了有价值的临床见解。


基因组学中AI的未来

image.png

彼得罗夫斯基说,机器学习不是静态的研究方法。未来可能会看到AI的许多变化和发展。


他认为,在“方法的先进性”方面,人工智能将有所进步。他说:“我们将能够定义更好的深度神经网络算法。”他补充说,它们将继续发展,并越来越重视高质量数据。


因此,Petrovski建议为数据添加结构以使其可用于AI。这是非常重要的,但是将主题专业知识整合进来也是如此,因为这将改善从AI分析得出的结论。这是Petrovski未来10年重点关注的地方。


他说,总体来说,人工智能为患者加速从数据集到医学的过程的机会将是使用机器学习的最重要结果。这不仅适用于基因组学,还适用于药物研发的所有方面。


结论

AI在基因组学中有许多用途,可以促进药物靶标的识别和潜在新疗法的开发。分析过程的整合帮助推动了基因组学的研究,尽管要实现其全部潜力还有很长的路要走。彼得罗夫斯基说,最终目标是“确保我们提取基础数据的全部价值”,并为此应用复杂的方法,这才是最大的收益。因此,下一步是确保将AI应用于高质量数据,以确保新的创新药物可以更快地到达患者。


目录
相关文章
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
192 63
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
思维跃迁:生成式人工智能(GAI)认证重塑AI时代核心竞争力范式
在数字化时代,AI不仅是工具,更是思维方式的革新。生成式人工智能(GAI)认证不仅帮助职场人士掌握AI技能,更引领从传统思维向AI思维的转型。通过培养数据敏感性、逻辑严谨性和创新能力,GAI认证填补了技能与思维的鸿沟,为企业和个人提供核心竞争力。拥抱AI思维,共创未来,在数字化浪潮中立于不败之地。
思维跃迁:生成式人工智能(GAI)认证重塑AI时代核心竞争力范式
破界·共生:生成式人工智能(GAI)认证重构普通人的AI进化图谱
本文探讨人工智能未来十大趋势及其对普通人的影响,涵盖神经形态计算、多模态认知融合等前沿领域。同时,文章重点介绍生成式人工智能(GAI)认证体系,帮助普通人从认知重构、能力进化到职业转型和伦理自觉全面学习AI技术,成为人机共生时代的智能伙伴。GAI认证作为加速器,提供系统培训与专业交流平台,助力个体在AI浪潮中把握机遇,共创未来。
人工智能与ai有什么区别
本文探讨了“人工智能”与“AI”在语义、使用场景及技术侧重点上的差异,强调理解这些差异对把握技术发展的重要性。文中分析了两者的学术与通俗应用场景,并结合生成式人工智能认证项目(由培生于2024年推出),说明如何通过理论与实践结合,规避AI局限性,推动技术创新。最终呼吁在概念辨析中探索人工智能的未来潜力。
人工智能(AI)时代,七成CEO职位安全受威胁?
随着AI的迅猛发展,74%的CEO担心未来两年内因未能取得AI商业回报而面临职位不保。Dataiku调查显示,94%的CEO认为AI能提供更出色的商业建议,但也忧虑技术生态锁定和定制化难题。AI治理和提升AI素养成为关键,GAI认证助力CEO应对挑战,确保企业在AI时代立于不败之地。
2025人工智能职场报告:57.2%的职场人考虑从事AI类职业,生成式人工智能(GAI)认证如何重构职业价值坐标系
人工智能(AI)已成为21世纪最具变革性的力量之一,尤其生成式人工智能(GAI)认证正重构职业价值坐标系。数据显示,57.2%的职场人愿从事AI相关职业,凸显其吸引力。GAI认证不仅提升个人竞争力、拓宽职业道路,还增强职业认同感,助力企业在人才选拔中更精准高效。面对机遇,职场人需明确目标、结合实践、持续学习,以适应快速发展的AI领域,为企业与个人发展奠定坚实基础。
Evo 2:基因编程AI革命!!DNA版GPT-4问世:100万碱基全解析,自动设计基因编辑器
Evo 2 是一款由 Acr 研究所、英伟达和斯坦福大学联合开发的 DNA 语言模型,可处理长达百万碱基对的序列,支持基因组设计、变异预测及合成生物学研究。
303 5
新手指南:人工智能poe ai 怎么用?国内使用poe记住这个方法就够了!
由于国内网络限制,许多用户在尝试访问Poe AI时面临障碍。幸运的是,现在国内用户也能轻松畅玩Poe AI,告别繁琐的设置,直接开启AI创作之旅!🎉
561 13
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等