OushuDB 体验新执行器

简介: 本章节通过TPCH lineitem 表来展示新执行器的使用。

image.png

本章节通过TPCH lineitem 表来展示新执行器的使用。

建立e_lineitem外部表用来生成TPCH lineitem 数据:

CREATE EXTERNAL WEB TABLE E_LINEITEM ( L_ORDERKEY    INT8 ,L_PARTKEY     INTEGER ,L_SUPPKEY     INTEGER ,L_LINENUMBER  INTEGER ,L_QUANTITY    FLOAT ,L_EXTENDEDPRICE  FLOAT ,L_DISCOUNT    FLOAT ,L_TAX         FLOAT ,L_RETURNFLAG  VARCHAR(1) ,L_LINESTATUS  VARCHAR(1) ,L_SHIPDATE    TEXT ,L_COMMITDATE  TEXT ,L_RECEIPTDATE TEXT ,L_SHIPINSTRUCT CHAR(25) ,L_SHIPMODE     VARCHAR(10) ,L_COMMENT      VARCHAR(44) )EXECUTE 'bash -c "$GPHOME/bin/dbgen -b $GPHOME/bin/dists.dss -T L -s 1 -N 6 -n $((GP_SEGMENT_ID + 1))"'on 6 format 'text' (delimiter '|');

创建ORC 表

CREATE TABLE lineitem(  L_ORDERKEY    INT8,L_PARTKEY     INTEGER,L_SUPPKEY     INTEGER,L_LINENUMBER  INTEGER,L_QUANTITY    FLOAT,L_EXTENDEDPRICE  FLOAT,L_DISCOUNT    FLOAT,L_TAX         FLOAT,L_RETURNFLAG  TEXT,L_LINESTATUS  TEXT,L_SHIPDATE    TEXT,L_COMMITDATE  TEXT,L_RECEIPTDATE TEXT,L_SHIPINSTRUCT TEXT,L_SHIPMODE     TEXT,L_COMMENT      TEXT)WITH (APPENDONLY = true, OIDS = FALSE, ORIENTATION = orc);

插入数据

INSERT INTO lineitem SELECT * FROM e_lineitem;

从下面的例子可以看到新执行器对于性能的大幅改进。

-----获取表行数------postgres=# set new_executor = on;SETpostgres=# SELECT COUNT(*) FROM lineitem;count---------6001215(1 row)Time: 17.006 mspostgres=# set new_executor = off;SETpostgres=# SELECT COUNT(*) FROM lineitem;count---------6001215(1 row)Time: 213.248 ms-----TPCH 查询 1 ------postgres=# set new_executor = on;SETpostgres=#  SELECTl_returnflag,l_linestatus,sum(l_quantity)::bigint as sum_qty,sum(l_extendedprice)::bigint as sum_base_price,sum(l_extendedprice * (1 - l_discount))::bigint as sum_disc_price,sum(l_extendedprice * (1 - l_discount) * (1 + l_tax))::bigint as sum_charge,avg(l_quantity)::bigint as avg_qty,avg(l_extendedprice)::bigint as avg_price,avg(l_discount)::bigint as avg_disc,count(*) as count_orderFROMlineitemWHEREl_shipdate <= '1998-08-20'GROUP BYl_returnflag,l_linestatus;l_returnflag | l_linestatus | sum_qty  | sum_base_price | sum_disc_price |  sum_charge  | avg_qty | avg_price | avg_disc | count_order--------------+--------------+----------+----------------+----------------+--------------+---------+-----------+----------+-------------R            | F            | 37719753 |    56568041381 |    53741292685 |  55889619120 |      26 |     38251 |        0 |     1478870N            | F            |   991417 |     1487504710 |     1413082168 |   1469649223 |      26 |     38284 |        0 |       38854A            | F            | 37734107 |    56586554401 |    53758257135 |  55909065223 |      26 |     38273 |        0 |     1478493N            | O            | 73808911 |   110700990251 |   105167436999 | 109377979031 |      26 |     38248 |        0 |     2894278(4 rows)Time: 234.376 mspostgres=# set new_executor = off;SETpostgres=#  SELECTl_returnflag,l_linestatus,sum(l_quantity)::bigint as sum_qty,sum(l_extendedprice)::bigint as sum_base_price,sum(l_extendedprice * (1 - l_discount))::bigint as sum_disc_price,sum(l_extendedprice * (1 - l_discount) * (1 + l_tax))::bigint as sum_charge,avg(l_quantity)::bigint as avg_qty,avg(l_extendedprice)::bigint as avg_price,avg(l_discount)::bigint as avg_disc,count(*) as count_orderFROMlineitemWHEREl_shipdate <= '1998-08-20'GROUP BYl_returnflag,l_linestatus;l_returnflag | l_linestatus | sum_qty  | sum_base_price | sum_disc_price |  sum_charge  | avg_qty | avg_price | avg_disc | count_order--------------+--------------+----------+----------------+----------------+--------------+---------+-----------+----------+-------------R            | F            | 37719753 |    56568041381 |    53741292685 |  55889619120 |      26 |     38251 |        0 |     1478870N            | F            |   991417 |     1487504710 |     1413082168 |   1469649223 |      26 |     38284 |        0 |       38854A            | F            | 37734107 |    56586554401 |    53758257135 |  55909065223 |      26 |     38273 |        0 |     1478493N            | O            | 73808911 |   110700990251 |   105167436999 | 109377979031 |      26 |     38248 |        0 |     2894278(4 rows)Time: 2341.147 ms
目录
相关文章
|
存储 SQL 消息中间件
大数据生态圈常用组件(一):数据库、查询引擎、ETL工具、调度工具等
大数据生态圈常用组件(一):数据库、查询引擎、ETL工具、调度工具等
|
25天前
|
监控 大数据 API
可以调度kettle的工具有哪些?都有什么特点?如何选择?
【10月更文挑战第25天】可以调度kettle的工具有哪些?都有什么特点?如何选择?
74 5
|
6月前
|
存储 数据采集 Kubernetes
一文详解K8s环境下Job类日志采集方案
本文介绍了K8s中Job和Cronjob控制器用于非常驻容器编排的场景,以及Job容器的特点:增删频率高、生命周期短和突发并发大。文章重点讨论了Job日志采集的关键考虑点,包括容器发现速度、开始采集延时和弹性支持,并对比了5种采集方案:DaemonSet采集、Sidecar采集、ECI采集、同容器采集和独立存储采集。对于短生命周期Job,建议使用Sidecar或ECI采集,通过调整参数确保数据完整性。对于突发大量Job,需要关注服务端资源限制和采集容器的资源调整。文章总结了不同场景下的推荐采集方案,并指出iLogtail和SLS未来可能的优化方向。
|
4月前
|
存储 SQL 关系型数据库
实时计算 Flink版产品使用问题之要配置MySQL集群存储节点,该如何配置
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
XML Java 关系型数据库
Activiti工作流引擎介绍
Activiti工作流引擎介绍
|
资源调度 分布式计算 Kubernetes
给 K8s 装上大数据调度引擎:伏羲架构升级 K8s 统一调度
飞天伏羲作为有着十多年历史的调度团队,在服务好 MaxCompute 大数据平台的过程中,一直在不断通过自我革新赶超业界先进水平,我们经历了 Fuxi 2.0 的这样的大规模升级,今天通过 K8s 统一调度项目又再次实现了系统架构的蜕变,将大数据平台强大的调度能力赋予 K8s 系统,同时去拥抱 K8s 周边丰富的生态。除了集团弹内集群,将来我们在公共云、专有云等多个场景,也会以 K8s 统一调度的方式进行输出,以更好地服务云上的用户,敬请期待!
1725 10
给 K8s 装上大数据调度引擎:伏羲架构升级 K8s 统一调度
|
分布式计算 前端开发 数据可视化
你只会用 xxl-job?一款更强大、新一代分布式任务调度框架来了,太强大了!
你只会用 xxl-job?一款更强大、新一代分布式任务调度框架来了,太强大了!
899 0
你只会用 xxl-job?一款更强大、新一代分布式任务调度框架来了,太强大了!
OushuDB 体验新执行器
OushuDB 体验新执行器
49 0
|
SQL 存储 分布式计算
OushuDB 的主要功能
OushuDB 的主要功能
82 0
|
数据库
OushuDB 产品介绍基本的模式
OushuDB 产品介绍基本的模式
84 0
下一篇
无影云桌面