机器学习模型训练和模型评估的过程

简介: 主要记录下模型训练和模型评估的过程

选择算法确定模型

   主要是根据特征和标签之间的关系,选出一个合适的算法,并找出与之对应的合适算法包,然后通过调用这个算法包来建立模型,通过上一篇文章,这个数据集里的某些特征和标签之间存在着近似线性的关系。而且这个数据集的标签是连续变量,因此适合用回归分析来寻找从特征到标签的预测函数。

  所谓的回归分析(regression analysis)就是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析,说白了就是当自变量变化的时候,研究一下因变量是怎么跟着变化的,它可以用来预测客流量、降雨量、销售量等。

  回归分析的算法有多种,如线性回归、多项式回归、贝叶斯回归等等。具体根据特征和标签 之间的关系来决定。初始时特征和标签可能存在线性关系可以用最简单、最基础的机器学习算法线性回归来建模,线性回归是给每一个特征变量找参数的过程。

比如数学中一元线性回归公式:y = a*x +b 对于机器学习来说,我们把斜率a叫做权重(weight) ,用英文字母w代表,把截距b叫做偏置(bias) ,用英文字母b代表,机器学习中一元线性回归公式表示为:

Y = w*x +b

机器学习算法包

  常用的算法工具包是scikit-learn ,简称sklearn 它是使用最广泛的开源python机器学习库,sklearn提供了大量用于数据挖掘的机器学习工具,覆盖数据预处理、可视化、交叉验证和多种机器学习算法。

建立模型

调用LinearRegression建立模型非常简单,如下

from sklearn.liner_model import LinerRegression # 导入线性回归算法模型
linereg_model = LinearRegression() #    使用线性回归创建模型

模型参数有两种,内部参数和外部参数。内部参数是属于算法本身的一部分,不用我们人工来确定,比如线性回归中的权重w和截距b,都是线性回归的内部参数;而外部参数也叫做超参数,他们的值是在创建模型时,由我们自己设定的。LinearRegression模型外部参数主要包含两个布尔值:

fit_intercept ,默认值为True,代表是否计算模型的截距

normalize,默认值为Flase代表是否对特征X在回归之前做规范化。

  • 训练拟合模型

训练模型就是用训练集中的特征变量和已知标签,根据样本大小的损失大小来逐渐拟合函数,确定最优的内部参数,最后完成模型。

linereg_model.fit(x_train,y_train) # 用训练集数据,训练机器,拟合函数,确定内部参数

主要得益于机器学习库的存在,直接通过fit完成模型训练,fit内部核心就是优化其内部参数减少损失,使函数对特征到标签的模拟越来越贴切,  针对所有样本,找到一组平均损失较小的模型参数。 这其中的关键就是:通过梯度下降,逐步优化模型的参数,使训练集误差值达到最小。

梯度下降:通过求导的方法,找到每一步的方向,确保总是往更小的损失方向前进。

  • 评估并优化模型性能。

在验证集和测试集进行模型效果评估的过程中,我们则是通过最小化误差来实现超参数(模型外部参数)的优化。机器学习包中(如scikit-learn)都会提供常用的工具和指标,对验证集和测试集进行评估,进而计算当前的误差。比如R方或者MSE均方误差指标,就可以用于评估回归分析模型的优劣。

预测方法:

通常就直接使用模型中的predict方法进行:

y_pred = linereg_model.predict(x_test) #预测测试集的Y值

比较测试数据集的原始特征数据、原始标签值和模型对标签的预测值组合一起显示、比较

df_ads_pred= X_test.copy() #测试集特征数据
df_ads_pred['浏览量真值'] = y_test
df_ads_pred['浏览量预测值'] = y_pred
df_ads_pred

   查看模型长得什么样?通过LinearRegression的coef_和intercept_属性打印出各个特征的权重和模型的偏置来,它们就是模型的内部参数。

linereg_model.coef_
linereg_model.intercept_

模型的评估分数:常用于评估回归分析模型的指标有两种:R方分数和MSE指标,并且大多数机器学习工具包中都会提供相关的工具,以下是用R方分数来评估模型

linears_model.score(x_test,y_test)

机器学习项目是一个循环迭代的过程,优秀的模型都是一次次迭代的产物模型评估 需要反复评测,找到最优的超参数,确定最终模型。

目录
相关文章
|
2月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
1天前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
20天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
67 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
28天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
48 12
|
2月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
61 8
|
2月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
59 6
|
2月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
2月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
2月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。