Flink CDC 系列 - 实现 MySQL 数据实时写入 Apache Doris

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink CDC 结合 Doris Flink Connector 实现 MySQL 数据实时入 Apache Doris。

本文通过实例来演示怎么通过 Flink CDC 结合 Doris 的 Flink Connector 实现从 Mysql 数据库中监听数据并实时入库到 Doris 数仓对应的表中。主要内容包括:

  1. 什么是 CDC
  2. Flink CDC
  3. 什么是 Flink Doris Connector
  4. 用法示例

Flink 中文学习网站
https://flink-learning.org.cn

一、什么是 CDC

CDC 是变更数据捕获 (Change Data Capture) 技术的缩写,它可以将源数据库 (Source) 的增量变动记录,同步到一个或多个数据目的 (Sink)。在同步过程中,还可以对数据进行一定的处理,例如分组 (GROUP BY)、多表的关联 (JOIN) 等。

例如对于电商平台,用户的订单会实时写入到某个源数据库;A 部门需要将每分钟的实时数据简单聚合处理后保存到 Redis 中以供查询,B 部门需要将当天的数据暂存到 Elasticsearch 一份来做报表展示,C 部门也需要一份数据到 ClickHouse 做实时数仓。随着时间的推移,后续 D 部门、E 部门也会有数据分析的需求,这种场景下,传统的拷贝分发多个副本方法很不灵活,而 CDC 可以实现一份变动记录,实时处理并投递到多个目的地。

CDC 的应用场景

  • 数据同步:用于备份,容灾;
  • 数据分发:一个数据源分发给多个下游系统;
  • 数据采集:面向数据仓库 / 数据湖的 ETL 数据集成,是非常重要的数据源。

CDC 的技术方案非常多,目前业界主流的实现机制可以分为两种:

  • 基于查询的 CDC

    • 离线调度查询作业,批处理。把一张表同步到其他系统,每次通过查询去获取表中最新的数据;
    • 无法保障数据一致性,查的过程中有可能数据已经发生了多次变更;
    • 不保障实时性,基于离线调度存在天然的延迟。
  • 基于日志的 CDC

    • 实时消费日志,流处理,例如 MySQL 的 binlog 日志完整记录了数据库中的变更,可以把 binlog 文件当作流的数据源;
    • 保障数据一致性,因为 binlog 文件包含了所有历史变更明细;
    • 保障实时性,因为类似 binlog 的日志文件是可以流式消费的,提供的是实时数据。

二、Flink CDC

Flink 在 1.11 版本中新增了 CDC 的特性,简称改变数据捕获。名称来看有点乱,我们先从之前的数据架构来看 CDC 的内容。

img

以上是之前的 mysq binlog 日志处理流程,例如 canal 监听 binlog 把日志写入到 kafka 中。而 Apache Flink 实时消费 Kakfa 的数据实现 mysql 数据的同步或其他内容等。拆分来说整体上可以分为以下几个阶段:

  1. Mysql 开启 binlog;
  2. Canal 同步 binlog 数据写入到 Kafka;
  3. Flink 读取 Kakfa 中的 binlog 数据进行相关的业务处理。

整体的处理链路较长,需要用到的组件也比较多。Apache Flink CDC 可以直接从数据库获取到 binlog 供下游进行业务计算分析

Flink Connector Mysql CDC 2.0 特性

提供 MySQL CDC 2.0,核心 feature 包括:

  • 并发读取,全量数据的读取性能可以水平扩展;
  • 全程无锁,不对线上业务产生锁的风险;
  • 断点续传,支持全量阶段的 checkpoint。

网上有测试文档显示用 TPC-DS 数据集中的 customer 表进行了测试,Flink 版本是 1.13.1,customer 表的数据量是 6500 万条,Source 并发为 8,全量读取阶段:

  • MySQL CDC 2.0 用时 13 分钟;
  • MySQL CDC 1.4 用时 89 分钟;
  • 读取性能提升 6.8 倍。

三、什么是 Flink Doris Connector

Flink Doris Connector 是 Doris 社区为了方便用户使用 Flink 读写 Doris 数据表的一个扩展,目前 Doris 支持 Flink 1.11.x ,1.12.x,1.13.x;Scala 版本:2.12.x。

目前 Flink Doris connector 目前控制入库通过两个参数:

  1. sink.batch.size:每多少条写入一次,默认 100 条;
  2. sink.batch.interval :每个多少秒写入一下,默认 1 秒。

这两参数同时起作用,哪个条件先到就触发写 Doris 表操作,

注意:

这里注意的是要启用 http v2 版本,具体在 fe.conf 中配置 enable_http_server_v2=true,同时因为是通过 fe http rest api 获取 be 列表,这俩需要配置的用户有 admin 权限。

四、用法示例

4.1 Flink Doris Connector 编译

首先我们要编译 Doris 的 Flink connector,也可以通过下面的地址进行下载:

https://github.com/hf200012/hf200012.github.io/raw/main/lib/doris-flink-1.0-SNAPSHOT.jar

注意:

这里因为 Doris 的 Flink Connector 是基于 Scala 2.12.x 版本进行开发的,所以你在使用 Flink 的时候请选择对应 Scala 2.12 的版本,如果你使用上面地址下载了相应的 jar,请忽略下面的编译内容部分。

在 Doris 的 docker 编译环境 apache/incubator-doris:build-env-1.2 下进行编译,因为 1.3 下面的 JDK 版本是 11,会存在编译问题。

在 extension/flink-doris-connector/ 源码目录下执行:

sh build.sh

编译成功后,会在 output/ 目录下生成文件 doris-flink-1.0.0-SNAPSHOT.jar。将此文件复制到 FlinkClassPath 中即可使用 Flink-Doris-Connector。例如,Local 模式运行的 Flink,将此文件放入 jars/ 文件夹下。Yarn 集群模式运行的 Flink,则将此文件放入预部署包中。

针对 Flink 1.13.x 版本适配问题

   <properties>
        <scala.version>2.12</scala.version>
        <flink.version>1.11.2</flink.version>
        <libthrift.version>0.9.3</libthrift.version>
        <arrow.version>0.15.1</arrow.version>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <doris.home>${basedir}/../../</doris.home>
        <doris.thirdparty>${basedir}/../../thirdparty</doris.thirdparty>
    </properties>

只需要将这里的 flink.version 改成和你 Flink 集群版本一致,重新编辑即可。

4.2 配置 Flink

这里我们是通过 Flink Sql Client 方式来进行操作。

这里我们演示使用的软件版本:

  1. Mysql 8.x
  2. Apache Flink :1.13.3
  3. Apache Doris :0.14.13.1

4.2.1 安装 Flink

首先下载和安装 Flink :

https://dlcdn.apache.org/flink/flink-1.13.3/flink-1.13.3-bin-scala_2.12.tgz

这里演示使用的是本地单机模式:

# wget https://dlcdn.apache.org/flink/flink-1.12.5/flink-1.12.5-bin-scala_2.12.tgz
# tar zxvf flink-1.12.5-bin-scala_2.12.tgz 

下载 Flink CDC 相关 Jar 包:

https://repo1.maven.org/maven2/com/ververica/flink-connector-mysql-cdc/2.0.2/flink-connector-mysql-cdc-2.0.2.jar

这里注意 Flink CDC 和 Flink 的版本对应关系。

image-20211025170642628

  • 将上面下载或者编译好的 Flink Doris Connector jar 包复制到 Flink 根目录下的 lib 目录下;
  • Flink CDC 的 jar 包也复制到 Flink 根目录下的 lib 目录下。

image-20211026095513892

4.2.2 启动 Flink

这里我们使用的是本地单机模式。

# bin/start-cluster.sh
Starting cluster.
Starting standalonesession daemon on host doris01.
Starting taskexecutor daemon on host doris01.

我们通过 web 访问 (默认端口是 8081) 启动起来 Flink 集群,可以看到集群正常启动。

image-20211025162831632

4.3 安装 Apache Doris

具体安装部署 Doris 的方法,参照下面的连接:

https://hf200012.github.io/2021/09/Apache-Doris-环境安装部署

4.4 安装配置 Mysql

  1. 安装 Mysql,快速使用 Docker 安装配置 Mysql,具体参照下面的连接:

    https://segmentfault.com/a/1190000021523570

  2. 开启 Mysql binlog,进入 Docker 容器修改 /etc/my.cnf 文件,在 [mysqld] 下面添加以下内容,

    log_bin=mysql_bin
    binlog-format=Row
    server-id=1

    然后重启 Mysql。

    systemctl restart mysqld
  3. 创建 Mysql 数据库表。
 CREATE TABLE `test_cdc` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
 ) ENGINE=InnoDB 

4.5 创建 Doris 表

CREATE TABLE `doris_test` (
  `id` int NULL COMMENT "",
  `name` varchar(100) NULL COMMENT ""
 ) ENGINE=OLAP
 UNIQUE KEY(`id`)
 COMMENT "OLAP"
 DISTRIBUTED BY HASH(`id`) BUCKETS 1
 PROPERTIES (
 "replication_num" = "3",
 "in_memory" = "false",
 "storage_format" = "V2"
 );

4.6 启动 Flink Sql Client

./bin/sql-client.sh embedded
> set execution.result-mode=tableau;

image-20211025165547903

4.6.1 创建 Flink CDC Mysql 映射表

CREATE TABLE test_flink_cdc ( 
  id INT, 
  name STRING,
  primary key(id)  NOT ENFORCED
) WITH ( 
  'connector' = 'mysql-cdc', 
  'hostname' = 'localhost', 
  'port' = '3306', 
  'username' = 'root', 
  'password' = 'password', 
  'database-name' = 'demo', 
  'table-name' = 'test_cdc' 
);

执行查询创建的 Mysql 映射表,显示正常。

select * from test_flink_cdc;

image-20211026100505972

4.6.2 创建 Flink Doris Table 映射表

使用 Doris Flink Connector 创建 Doris 映射表。

CREATE TABLE doris_test_sink (
   id INT,
   name STRING
) 
WITH (
  'connector' = 'doris',
  'fenodes' = 'localhost:8030',
  'table.identifier' = 'db_audit.doris_test',
  'sink.batch.size' = '2',
  'sink.batch.interval'='1',
  'username' = 'root',
  'password' = ''
)

在命令行下执行上面的语句,可以看到创建表成功,然后执行查询语句,验证是否正常。

select * from doris_test_sink;

image-20211026100804091

执行插入操作,将 Mysql 里的数据通过 Flink CDC 结合 Doris Flink Connector 方式插入到 Doris 中。

INSERT INTO doris_test_sink select id,name from test_flink_cdc

image-20211026101004547

提交成功之后我们在 Flink 的 Web 界面可以看到相关的 Job 任务信息。

image-20211026100943474

4.6.3 向 Mysql 表中插入数据

INSERT INTO test_cdc VALUES (123, 'this is a update');
INSERT INTO test_cdc VALUES (1212, '测试flink CDC');
INSERT INTO test_cdc VALUES (1234, '这是测试');
INSERT INTO test_cdc VALUES (11233, 'zhangfeng_1');
INSERT INTO test_cdc VALUES (21233, 'zhangfeng_2');
INSERT INTO test_cdc VALUES (31233, 'zhangfeng_3');
INSERT INTO test_cdc VALUES (41233, 'zhangfeng_4');
INSERT INTO test_cdc VALUES (51233, 'zhangfeng_5');
INSERT INTO test_cdc VALUES (61233, 'zhangfeng_6');
INSERT INTO test_cdc VALUES (71233, 'zhangfeng_7');
INSERT INTO test_cdc VALUES (81233, 'zhangfeng_8');
INSERT INTO test_cdc VALUES (91233, 'zhangfeng_9');

4.6.4 观察 Doris 表的数据

首先停掉 Insert into 这个任务,因为我是在本地单机模式,只有一个 task 任务,所以要停掉,然后在命令行执行查询语句才能看到数据。

image-20211026101203629

4.6.5 修改 Mysql 的数据

重新启动 Insert into 任务:

image-20211025182341086

修改 Mysql 表里的数据:

update test_cdc set name='这个是验证修改的操作' where id =123

再去观察 Doris 表中的数据,你会发现已经修改。

注意这里如果要想 Mysql 表里的数据修改,Doris 里的数据也同样修改,Doris 数据表的模型要是 Unique key 模型,其他数据模型 (Aggregate Key 和 Duplicate Key) 不能进行数据的更新操作。

image-20211025182435827

4.6.6 删除数据操作

目前 Doris Flink Connector 还不支持删除操作,后面计划会加上这个操作。

更多 Flink CDC 相关技术问题,可扫码加入社区钉钉交流群~

img


相关文章

近期热点

img


更多 Flink 相关技术问题,可扫码加入社区钉钉交流群
第一时间获取最新技术文章和社区动态,请关注公众号~

image.png

活动推荐

阿里云基于 Apache Flink 构建的企业级产品-实时计算Flink版现开启活动:
99 元试用 实时计算Flink版(包年包月、10CU)即有机会获得 Flink 独家定制卫衣;另包 3 个月及以上还有 85 折优惠!
了解活动详情:https://www.aliyun.com/product/bigdata/sc

image.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
11天前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
289 33
The Past, Present and Future of Apache Flink
|
2月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
844 13
Apache Flink 2.0-preview released
|
2月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
89 3
|
29天前
|
存储 监控 数据处理
flink 向doris 数据库写入数据时出现背压如何排查?
本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
165 61
|
3天前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
34 16
|
1月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
86 9
|
2月前
|
SQL 消息中间件 大数据
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
75 1
|
2月前
|
SQL 大数据 Apache
大数据-159 Apache Kylin 构建Cube 准备和测试数据(二)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(二)
87 1
|
2月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
80 1
|
2月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
176 0

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多