二叉树的三种遍历方式,含demo(递归与非递归)

简介: 前置知识:什么是二叉树:一个递归的树形数据结构,每个节点最多有两个子节点;二叉树一般都是二分查找树,每个节点的值大于它左子节点的值,小于它右子节点的值

前置知识:

什么是二叉树:一个递归的树形数据结构,每个节点最多有两个子节点;二叉树一般都是二分查找树,每个节点的值大于它左子节点的值,小于它右子节点的值

20210308122821282.png

二叉树遍历:

递归遍历:


前序遍历:先访问根节点,再访问左子节点,最后访问右子节点

上图中前序遍历结果:30、20、5、28、50、38、58


中序遍历:先访问左子节点,再访问根节点,最后访问右子节点

上图中中序遍历结果:5、20、28、30、38、50、58


后序遍历:先访问左子节点,再访问右子节点,最后访问根节点

上图中后序遍历结果:5、28、20、38、58、50、30


非递归遍历:


常用的是利用栈的先进后出特性,不断地将节点入栈,然后再出栈

非递归前序遍历和非递归中序遍历两种方式很好理解,控制遍历时机即可,而非递归后序遍历较为复杂,需要额外维护一个最后访问节点


二叉树demo


详细实现原理都在注释中,花了几天写的,球球你好好看看,来都来了

public class MyBinaryTree {
    //根节点
    private MyNode root;
    //注意,这是私有方法,对用户开放的新增方法在下面,其它几个方法也是
    private MyNode addNode(MyNode current, int value) {
        //如果根节点为空,直接new个新节点
        if (current == null) return new MyNode(value);
        if (value < current.value) {
            //如果当前插入节点的值小于根节点,则在树的左边递归插入
            current.left = addNode(current.left, value);
        } else if (value > current.value) {
            //如果当前插入节点的值大于根节点,则在树的右边递归插入
            current.right = addNode(current.right, value);
        } else {
            //如果等于,直接返回
            return current;
        }
        return current;
    }
    public void addNode(int value) {
        //指定当前根节点
        root = addNode(root, value);
    }
    private boolean isContainNode(MyNode current, int value) {
        //如果当前根节点不存在,直接返回false
        if (current == null) return false;
        //如果根节点存在并且值等于当前查找值,返回true
        if (current.value == value) return true;
        //如果目标值大于当前节点值,则在右子树递归查找,反之在左子树递归查找
        return value > current.value ? isContainNode(current.right, value) : isContainNode(current.left, value);
    }
    public boolean isContainNode(int value) {
        //从根节点开始找
        return isContainNode(root, value);
    }
    //删除节点比较复杂,或许会让你看了以后疯狂怀疑自己,请酌情查看
    private MyNode deleteNode(MyNode current, int value) {
        //如果节点不存在,就不删咯
        if (!isContainNode(value) || current == null) return null;
        //如果目标节点等于根节点
        if (current.value == value) {
            //目标节点无子节点,直接删除目标节点
            if (current.left == null && current.right == null) return null;
            //目标节点只有左子节点,直接删除目标节点,并将目标节点的父节点指向左子节点
            if (current.right == null) return current.left;
            //目标节点只有右子节点,直接删除目标节点,并将目标节点的父节点指向右子节点
            if (current.left == null) return current.right;
            //目标节点既有左子节点又有右子节点,这种比较复杂
            //需要将目标节点右子节点的最左节点,或者目标节点左子节点的最右节点替换成目标节点,然后将目标节点删除
            //我们这里是替换目标节点右子节点的最左节点,所以需要找到目标节点右子节点下面最小的那个节点,即左最节点
            int i = findSmallerNode(current.right);
            //将目标节点替换成找到的最左节点
            current.value = i;
            //递归删除,满足上面能删除的三种情况
            current.right = deleteNode(current.right, i);
            return current;
        } else if (current.value > value) {
            current.left = deleteNode(current.left, value);
            return current;
        } else {
            current.right = deleteNode(current.right, value);
            return current;
        }
    }
    public boolean deleteNode(int value) {
        MyNode node = deleteNode(root, value);
        if (node == null) return false;
        return true;
    }
    //中序递归遍历
    private void centerShow(MyNode root) {
        if (root != null) {
            //先递归遍历左子树
            centerShow(root.left);
            //遍历根节点
            System.out.print(root.value + " ");
            //再递归遍历右子树
            centerShow(root.right);
        }
    }
    public void centerShow() {
        System.out.print("\n中序递归遍历:");
        centerShow(root);
    }
    public void centerShowPro() {
        System.out.print("\n中序非递归遍历:");
        //利用栈的先进后出
        Stack<MyNode> nodeStack = new Stack<>();
        while (root != null || !nodeStack.isEmpty()) {
            //将根节点遍历入栈
            while (root != null) {
                nodeStack.push(root);
                root = root.left;
            }
            //取出栈顶元素作为根节点并删除栈顶元素,此时栈顶元素为最左节点的值
            root = nodeStack.pop();
            //遍历左节点,因为是从根往左入栈,所以出栈是从左到根
            System.out.print(root.value + " ");
            //找到下一个节点,依次往右遍历
            root = root.right;
        }
    }
    private void preShow(MyNode root) {
        if (root != null) {
            //先遍历根节点
            System.out.print(root.value + " ");
            //然后遍历左节点
            preShow(root.left);
            //再遍历右节点
            preShow(root.right);
        }
    }
    public void preShow() {
        System.out.print("\n先序递归遍历:");
        preShow(root);
    }
    public void preShowPro() {
        System.out.print("\n先序非递归遍历:");
        Stack<MyNode> nodeStack = new Stack<>();
        while (root != null || !nodeStack.isEmpty()) {
            while (root != null) {
                //同中序非递归遍历,只是这里先遍历根节点
                System.out.print(root.value + " ");
                nodeStack.push(root);
                root = root.left;
            }
            root = nodeStack.pop();
            root = root.right;
        }
    }
    private void afterShow(MyNode root) {
        if (root != null) {
            afterShow(root.left);
            afterShow(root.right);
            System.out.print(root.value + " ");
        }
    }
    public void afterShow() {
        System.out.print("\n后序递归遍历:");
        afterShow(root);
    }
    public void afterShowPro() {
        System.out.print("\n后序非递归遍历:");
        Stack<MyNode> nodeStack = new Stack<>();
        MyNode lastNode = null;
        while (root != null || !nodeStack.isEmpty()) {
            while (root != null) {
                nodeStack.push(root);
                root = root.left;
            }
            //取出栈顶元素但不删除
            root = nodeStack.peek();
            //如果栈顶元素的右节点为空或者它是最后一次访问的节点
            if (root.right == null || root.right == lastNode) {
                //遍历当前节点
                System.out.print(root.value + " ");
                lastNode = nodeStack.pop();
                root = null;
            } else {
                root = root.right;
            }
        }
    }
    private int findSmallerNode(MyNode root) {
        //删除节点用的,用来找到节点的最左子节点
        return root.left == null ? root.value : findSmallerNode(root.right);
    }
    //节点,为了演示方便,只支持存放int数字
    private class MyNode {
        private int value;
        private MyNode left;
        private MyNode right;
        public MyNode(int value) {
            this.value = value;
            this.left = null;
            this.right = null;
        }
    }
}

测试:

 
         
public class MyBinaryTest {
    public static void main(String[] args) {
        deleteTest();
        testPre();
        testPrePro();
        testCenter();
        testCenterPro();
        testAfter();
        testAfterPro();
    }
    public static void deleteTest() {
        MyBinaryTree tree = new MyBinaryTree();
        tree.addNode(30);
        tree.addNode(20);
        tree.addNode(5);
        tree.addNode(28);
        tree.addNode(50);
        tree.addNode(38);
        tree.addNode(58);
        System.out.println("是否存在28:"+tree.isContainNode(28));
        tree.deleteNode(28);
        System.out.println("删除28后是否还存在28:"+tree.isContainNode(28));
    }
    public static void testCenter() {
        MyBinaryTree tree = new MyBinaryTree();
        tree.addNode(30);
        tree.addNode(20);
        tree.addNode(5);
        tree.addNode(28);
        tree.addNode(50);
        tree.addNode(38);
        tree.addNode(58);
        tree.centerShow();
    }
    public static void testCenterPro() {
        MyBinaryTree tree = new MyBinaryTree();
        tree.addNode(30);
        tree.addNode(20);
        tree.addNode(5);
        tree.addNode(28);
        tree.addNode(50);
        tree.addNode(38);
        tree.addNode(58);
        tree.centerShowPro();
    }
    public static void testPre() {
        MyBinaryTree tree = new MyBinaryTree();
        tree.addNode(30);
        tree.addNode(20);
        tree.addNode(5);
        tree.addNode(28);
        tree.addNode(50);
        tree.addNode(38);
        tree.addNode(58);
        tree.preShow();
    }
    public static void testPrePro() {
        MyBinaryTree tree = new MyBinaryTree();
        tree.addNode(30);
        tree.addNode(20);
        tree.addNode(5);
        tree.addNode(28);
        tree.addNode(50);
        tree.addNode(38);
        tree.addNode(58);
        tree.preShowPro();
    }
    public static void testAfter() {
        MyBinaryTree tree = new MyBinaryTree();
        tree.addNode(30);
        tree.addNode(20);
        tree.addNode(5);
        tree.addNode(28);
        tree.addNode(50);
        tree.addNode(38);
        tree.addNode(58);
        tree.afterShow();
    }
    public static void testAfterPro() {
        MyBinaryTree tree = new MyBinaryTree();
        tree.addNode(30);
        tree.addNode(20);
        tree.addNode(5);
        tree.addNode(28);
        tree.addNode(50);
        tree.addNode(38);
        tree.addNode(58);
        tree.afterShowPro();
    }
}

运行结果:

是否存在28:true
删除28后是否还存在28:false
先序递归遍历:30 20 5 28 50 38 58 
先序非递归遍历:30 20 5 28 50 38 58 
中序递归遍历:5 20 28 30 38 50 58 
中序非递归遍历:5 20 28 30 38 50 58 
后序递归遍历:5 28 20 38 58 50 30 
后序非递归遍历:5 28 20 38 58 50 30 

还是那句话,家里有条件的一定一定一定复制到idea跑一跑

ok我话说完,skr~

相关文章
|
8月前
|
人工智能 Serverless 定位技术
MCP云托管最优解,揭秘国内最大MCP中文社区背后的运行时
近期,中国第一 AI 开源社区魔搭(ModelScope)推出全新 MCP 广场,上架千余款热门的 MCP 服务。从当下火热的高德地图、网页抓取再到独家的支付宝,开发者/机构可以查看近 1500 种 MCP 的功能与应用场景,并通过 MCP 实验场直接上手使用。魔搭的加入无疑对国内 MCP 的发展开启了加速键。
|
9月前
|
运维 Kubernetes Cloud Native
什么是云原生?
云原生(Cloud Native)是一种充分利用云计算弹性和自动化能力的架构理念,核心思想包括以云为中心、模块化与松耦合、自动化运维及弹性容错。其关键技术涵盖容器化(如Docker)、编排调度(如Kubernetes)、微服务和DevOps等。相比传统架构,云原生具备敏捷性、弹性伸缩、高可用性和资源优化等优势,适用于互联网高并发业务、AI/大数据平台及企业转型场景。然而,落地面临技术复杂度高、组织文化转型及安全合规挑战。未来发展趋势包括混合多云管理、智能化运维及WebAssembly等轻量化技术。Gartner预测,到2025年超95%新应用将采用云原生模式开发。
3116 3
|
JavaScript
vue项目中使用vue-router进行路由配置及嵌套多级路由
该文章详细说明了如何在Vue项目中配置和使用vue-router进行单页面应用的路由管理,包括设置嵌套路由和实现多级路由导航的示例。
vue项目中使用vue-router进行路由配置及嵌套多级路由
|
测试技术 UED
软件测试中的探索性测试:一种高效且灵活的测试方法
本文将深入探讨探索性测试的核心概念、优势及其在实际项目中的应用。我们将从探索性测试的基本定义入手,逐步解析其在不同场景下的具体实施方法和最佳实践。通过详细的案例分析和方法对比,帮助读者全面了解这种既高效又灵活的软件测试技术。
|
负载均衡 安全 Java
微服务 Gateway 使用详解
网关(Gateway)是连接不同网络并进行数据转发的关键组件。在互联网中,路由器常作为默认网关;在现代操作系统中,网关指本地网络上转发数据包的设备。Spring Cloud Gateway是一款基于Spring Framework的API网关,具备反向代理、高性能、负载均衡、安全控制、限流熔断、日志监控等功能。通过简单配置即可实现请求路由和转发,适用于微服务架构中的集中控制、解耦客户端与服务、自动服务发现等场景,提升系统安全性与可扩展性。
1647 4
|
XML 开发框架 前端开发
Ajax学习(基础知识)
Ajax学习(基础知识)
|
JavaScript API UED
Vue Suspense
Vue Suspense
143 0
|
人工智能 网络协议 物联网
重拾计网-第一弹
重拾计网-第一弹
|
存储 编解码 iOS开发
Adobe国际认证教程指南|Adobe Premiere Pro 新建项目
Adobe国际认证教程指南|Adobe Premiere Pro 新建项目
Adobe国际认证教程指南|Adobe Premiere Pro 新建项目