除了深度学习,你需要知道AI技术的23个方向 | 机器之心首份技术报告

简介: 在即将过去的 2017 年,深度学习技术蓬勃发展,AlphaZero 从「零」开始在多种棋类竞技上快速发展,DeepStack 与 Libratus 在德州扑克中击败人类高手,GAN 衍生出各种变体,语音合成从实验室走向产品,Vicarious 提出全新概率生成模型并击破人类的 CAPTCHA 验证码。

微信图片_20211129142946.jpg

在即将过去的 2017 年,深度学习技术蓬勃发展,AlphaZero 从「零」开始在多种棋类竞技上快速发展,DeepStack 与 Libratus 在德州扑克中击败人类高手,GAN 衍生出各种变体,语音合成从实验室走向产品,Vicarious 提出全新概率生成模型并击破人类的 CAPTCHA 验证码。这些令人振奋的进展将智能技术从实验室带到了产业及应用层面,「人工智能」及「深度学习」等概念也进入了大众视野并成为流行词汇。


作为国内首家系统性关注人工智能的科技媒体,机器之心在过去几年的报道工作中见证了深度学习引领的又一次人工智能浪潮以及大众关注的热情,与此同时我们也发现由于「AI Effect」的存在,有很多人忽略了深度学习之外的其它人工智能技术,对人工智能各种技术分类及基础概念、技术的历史进程和发展方向都缺乏成体系化的了解,导致对人工智能技术的整体发展趋势及「可用性」缺少宏观认识,并在试图采用人工智能技术进行产业革新时走了很多弯路。


因此,机器之心推出《人工智能技术趋势报告》,旨在帮助读者:


1)系统全面纵览人工智能(AI)的 23 个分支技术


2)明晰人工智能(AI)下各分支技术的历史发展路径,解读现有瓶颈及未来发展趋势。


3)分析人工智能(AI)下各分支技术在产业中的实际应用情况,评估其在「研究」、「工程」、「应用」、「社会影响」这四个阶段中所处位置,为计划使用人工智能技术的决策者提供决策参考。


4)为 AI 从业者提供技术趋势参考;产业方、初学者提供系统性的技术学习资料。



你将从报告中获得什么?


本报告所讨论的「人工智能」主要是指可以通过机器体现的智能,也叫做机器智能(Machine Intelligence)。在学术研究领域,指能够感知周围环境并采取行动以实现最优可能结果的智能体(intelligent agent)。一般而言,人工智能的长期目标是实现通用人工智能(AGI),这被看作是「强人工智能(strong AI)」。在处理交叉领域问题时,AGI 的表现会远远超过普通机器,并且可以同时处理多个任务。而弱人工智能(weak AI,也被称为「狭隘人工智能(narrow AI)」)无法解决之前未见过的问题,而且其能力仅局限在特定领域内。但是,人工智能专家和科学家现在对 AGI 的确切定义仍然含混不清。区别强人工智能和弱人工智能的常见方法是进行测试,比如 Coffee Test、图灵测试、机器人大学生测试和就业测试。


本报告所讨论的「技术(technology)」是一个范围广泛的概念,包含人工智能领域所使用的方法、算法和模型,我们将使用「技术」一词指代这三者。根据参考经典教材、书籍、论文、博客、视频和 MOOC(大型开放式网络课程)等材料,我们确定了 23 种不同的人工智能技术并将它们分成 4 大领域:


  • 解决问题(搜索)
  • 知识、推理和规划
  • 学习
  • 通信、感知和行为


微信图片_20211129142951.jpg


我们把上面列出的 23 种技术根据它们在人工智能领域内的基本机制、方法和应用相似度进行了分类。这些分类并不是互斥的。你可以将它们看作是人类具有的能力,每种能力都有不同的功能,共同协作才能实现更高级更复杂的目标。


技术发展阶段的分类方法有很多。现有的大多数方法都被称为「技术生命周期(Technology Life Cycles)」,其中也包括「衰落」阶段。但是,对于这份针对人工智能技术的特定研究报告而言,我们没有考虑「衰落」阶段。尽管我们认为一种特定技术的发展可能会在某个时候停滞,但其发展(在科学进步方面看)不会退步;对技术「衰退」的引证通常是在商业角度上考量的。根据我们对多个信息来源的评估和分析,我们确定了人工智能技术发展将会经历的四个周期:研究、工程、应用和社会影响。这里给出了每个阶段的详细定义,以作为未来详细分析的范式:


微信图片_20211129142954.jpg

注:实际上这里涵盖了很多技术的子类别,而我们将它们当作一个整体来确定它们的发展阶段。一旦有特定的迹象说明一种技术已经经过了一个特定的阶段,那么整个技术类别都将被置于该阶段——尽管对该技术可能还有一些持续性的研究、工程或应用工作。

微信图片_20211129142957.jpg


报告试读


微信图片_20211129143001.jpg


请点击放大阅读



多位大牛一致推荐


发布之前,我们特意邀请人工智能领域多位顶级专家进行了试读,并获得了他们的一致推荐。

微信图片_20211129143007.jpg

微信图片_20211129143010.jpg

微信图片_20211129143013.jpg微信图片_20211129143017.jpg微信图片_20211129143020.jpg微信图片_20211129143024.jpg


//

推荐语按姓氏拼音排序



我们需要你的参与


在这份报告的制作过程中,我们得到了数位一线研究者的协助,在此特别致谢。这份报告只是一个开始,在接下来的 2018 年机器之心将以这份报告为起点,推出更多的技术分析内容项目,并邀请感兴趣的读者加入我们,共同为行业带来更多优质内容。


加入方式:公众号回复关键词开放项目」,即可获得相关说明。


购买须知


  1. 报告语言:中文。
  2. 购买方式:点击阅读原文,即可购买。
  3. 如何阅读:购买报告后,点击机器之心公众号菜单栏「内容商店」进入阅读。
  4. 报告为虚拟内容服务,一经订阅成功概不退款,敬请理解。
  5. 如有其他疑问,请添加机器之心小助手Ⅱ:syncedai2。


目录
打赏
0
0
0
0
372
分享
相关文章
构建可落地的企业AI Agent,背后隐藏着怎样的技术密码?
三桥君深入解析企业AI Agent技术架构,涵盖语音识别、意图理解、知识库协同、语音合成等核心模块,探讨如何实现业务闭环与高效人机交互,助力企业智能化升级。
120 6
AI + 低代码技术揭秘(十二):开发人员工具和可扩展性
VTJ平台提供开发工具与扩展框架,支持低代码应用的开发与拓展。包含CLI、插件系统及Uni-App集成,结合Vite、TypeScript和Vue优化开发流程。
130 62
AI 基础知识从 0.3 到 0.4——如何选对深度学习模型?
本系列文章从机器学习基础出发,逐步深入至深度学习与Transformer模型,探讨AI关键技术原理及应用。内容涵盖模型架构解析、典型模型对比、预训练与微调策略,并结合Hugging Face平台进行实战演示,适合初学者与开发者系统学习AI核心知识。
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
本文以 MNIST 手写数字识别为切入点,介绍了深度学习的基本原理与实现流程,帮助读者建立起对神经网络建模过程的系统性理解。
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
AI虫子种类识别数据集(近3000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
本数据集包含近3000张已划分、标注的虫子图像,适用于YOLO系列模型的目标检测与分类任务。涵盖7类常见虫子,标注采用YOLO格式,结构清晰,适合农业智能化、小样本学习及边缘部署研究。数据来源多样,标注精准,助力AI虫害识别落地应用。
109 4
AI虫子种类识别数据集(近3000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
AI量化交易软件开发技术逻辑
AI量化交易融合人工智能与量化分析,通过算法模型深度解析市场数据,自动生成并执行交易策略,显著提升交易效率与决策精准度。其开发涵盖目标分析、数据处理、算法设计、系统构建、测试优化、合规安全及持续迭代等多个关键环节,涉及金融、编程、大数据与AI等多领域技术。掌握这些核心技术,方能打造高效智能的量化交易系统,助力投资者实现更优收益。
16个AI Logo 设计工具大盘点:技术解析、Logo格式对比与实用推荐
本文介绍了品牌标志(Logo)的重要性,并盘点了多款免费且好用的 Logo 生成工具,分析其输出尺寸、格式及适用场景,帮助无设计基础的用户选择合适工具,高效制作满足不同用途的 Logo。
154 0
AI时代,Apipost和Apifox如何利用AI技术赋能API研发测试管理所需?
在数字化转型加速背景下,API成为企业互联互通的关键。Apipost与Apifox作为主流工具,在AI赋能方面差异显著。Apipost通过智能参数命名、接口设计自动化、测试用例生成、断言自动化等功能大幅提升研发效率和质量,尤其适合中大型企业及复杂业务场景。相比之下,Apifox功能依赖手动操作较多,适用性更偏向初创或小型项目。随着AI技术发展,Apipost展现出更强的智能化与前瞻性优势,为企业提供高效、稳定的API管理解决方案,助力其在竞争激烈的市场中实现创新突破。
63 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问