阿里云升级金融级分布式架构解决方案 助力南京银行核心系统云化升级

简介: 阿里云升级金融级分布式架构解决方案 助力南京银行核心系统云化升级

7月11日晚间消息,阿里云宣布升级金融级分布式架构解决方案,为金融机构提供互联网时代背景下,通往数字化转型升级的技术动能。

据介绍,该解决方案在原有分布式架构基础上,仍以自主研发的大规模操作系统飞天为基础,安全可控的专有云为底座,整合阿里巴巴“去中心化”的分布式应用服务架构、金融级数据库OceanBase、云效DevOps、人工智能等优势产品,为金融机构提供将自身的金融服务和互联网业务场景对接起来的能力,实现业务的快速创新迭代。

对应用传统IT架构的金融机构来说,如果用一个问题描述其所面临的挑战,那就是“如何实现海量客户、海量交易,任何人在任何地点、任何时间、任何场景下,通过多种渠道均可使用银行服务”。

阿里云金融级分布式架构解决方案,正是为了助力银行等机构快速解决这一难题。通过分布式云架构,让金融机构可以弹性支撑各类互联网形态的业务,同时又具备金融业的稳定性和高可用。

目前,踏入“万亿俱乐部”的南京银行已经用上了阿里云分布式架构解决方案,成为国内首家成功上线运营分布式核心业务系统的商业银行。南京银行基于该解决方案构建的“鑫云+”服务了多家银行的线上百万用户,平均每个客户的放款时间只需1秒,日处理订单量设计容量可达到100万笔,是原来的10倍。

“鑫云 +”一改银行IT支撑系统集中式架构的局限性,搭建了高效输出、快速迭代、海量扩容的互联网金融云平台。“我们仅用时4个月就完成了鑫云+平台的构建,在很多人看来是不可能完成的任务。”南京银行信息技术部副总经理李勇表示,将互联网核心系统上云后,完全打破了银行业务增长的边界。

采用分布式云计算系统已经是大势所趋。在中国人民银行2017年印发的《中国金融业信息技术“十三五”发展规划》中,就提出“稳步推进系统架构和云计算技术应用研究”、“支持实力较强的机构独立或者联合建设金融业云服务平台”的要求。同时,国家从金融安全的战略层面,也提出了对金融系统“自主可控”的要求。

相关文章
|
28天前
|
存储 缓存 NoSQL
分布式系统架构8:分布式缓存
本文介绍了分布式缓存的理论知识及Redis集群的应用,探讨了AP与CP的区别,Redis作为AP系统具备高性能和高可用性但不保证强一致性。文章还讲解了透明多级缓存(TMC)的概念及其优缺点,并详细分析了memcached和Redis的分布式实现方案。此外,针对缓存穿透、击穿、雪崩和污染等常见问题提供了应对策略,强调了Cache Aside模式在解决数据一致性方面的作用。最后指出,面试中关于缓存的问题多围绕Redis展开,建议深入学习相关知识点。
175 8
|
15天前
|
机器学习/深度学习 缓存 自然语言处理
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
DeepSeekMoE是一种创新的大规模语言模型架构,融合了专家混合系统(MoE)、多头潜在注意力机制(MLA)和RMSNorm归一化。通过专家共享、动态路由和潜在变量缓存技术,DeepSeekMoE在保持性能的同时,将计算开销降低了40%,显著提升了训练和推理效率。该模型在语言建模、机器翻译和长文本处理等任务中表现出色,具备广泛的应用前景,特别是在计算资源受限的场景下。
305 29
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
|
12天前
|
人工智能 JavaScript 安全
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
55 13
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
|
1天前
|
安全 NoSQL MongoDB
XJ-Survey:这个让滴滴日均处理1.2亿次问卷请求的开源系统,今天终于公开了它的架构密码!
嗨,大家好,我是小华同学。今天为大家介绍一款由滴滴开源的高效调研系统——XJ-Survey。它功能强大,支持多类型数据采集、智能逻辑编排、精细权限管理和数据在线分析,适用于问卷、考试、测评等场景。采用 Vue3、NestJS 等先进技术栈,确保高性能与安全性。无论是企业还是个人,XJ-Survey 都是你不可错过的神器!项目地址:[https://github.com/didi/xiaoju-survey](https://github.com/didi/xiaoju-survey)
37 15
|
5天前
|
SQL 弹性计算 安全
【上云基础系列04】基于标准架构的数据库升级
本文回顾了业务上云从基础到进阶的理念,涵盖基础版和全栈版架构。在“入门级:上云标准弹性架构基础版”的基础上,本文针对数据库升级,重点介绍了高可用数据库架构的升级方案,确保数据安全和业务连续性。最后,附有详细的“上云标准弹性架构”演进说明,帮助用户选择合适的架构方案。
|
23天前
|
存储 缓存 关系型数据库
社交软件红包技术解密(六):微信红包系统的存储层架构演进实践
微信红包本质是小额资金在用户帐户流转,有发、抢、拆三大步骤。在这个过程中对事务有高要求,所以订单最终要基于传统的RDBMS,这方面是它的强项,最终订单的存储使用互联网行业最通用的MySQL数据库。支持事务、成熟稳定,我们的团队在MySQL上有长期技术积累。但是传统数据库的扩展性有局限,需要通过架构解决。
63 18
|
1月前
|
存储 运维 安全
盘古分布式存储系统的稳定性实践
本文介绍了阿里云飞天盘古分布式存储系统的稳定性实践。盘古作为阿里云的核心组件,支撑了阿里巴巴集团的众多业务,确保数据高可靠性、系统高可用性和安全生产运维是其关键目标。文章详细探讨了数据不丢不错、系统高可用性的实现方法,以及通过故障演练、自动化发布和健康检查等手段保障生产安全。总结指出,稳定性是一项系统工程,需要持续迭代演进,盘古经过十年以上的线上锤炼,积累了丰富的实践经验。
|
1月前
|
存储 缓存 安全
分布式系统架构7:本地缓存
这是小卷关于分布式系统架构学习的第10篇文章,主要介绍本地缓存的基础理论。文章分析了引入缓存的利弊,解释了缓存对CPU和I/O压力的缓解作用,并讨论了缓存的吞吐量、命中率、淘汰策略等属性。同时,对比了几种常见的本地缓存工具(如ConcurrentHashMap、Ehcache、Guava Cache和Caffeine),详细介绍了它们的访问控制、淘汰策略及扩展功能。
76 6
|
1月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
50 7
|
1月前
|
存储 关系型数据库 分布式数据库
[PolarDB实操课] 01.PolarDB分布式版架构介绍
《PolarDB实操课》之“PolarDB分布式版架构介绍”由阿里云架构师王江颖主讲。课程涵盖PolarDB-X的分布式架构、典型业务场景(如实时交易、海量数据存储等)、分布式焦点问题(如业务连续性、一致性保障等)及技术架构详解。PolarDB-X基于Share-Nothing架构,支持HTAP能力,具备高可用性和容错性,适用于多种分布式改造和迁移场景。课程链接:[https://developer.aliyun.com/live/253957](https://developer.aliyun.com/live/253957)。更多内容可访问阿里云培训中心。
[PolarDB实操课] 01.PolarDB分布式版架构介绍