熬了几大夜,吐血整理内部包含2980元大数据分析课程,仅分享1次!

简介: 互联网行业数据分析的主要对象是产品、运营和用户,其次是市场和客户。以数据为依据,为产品策略、运营战术、用户研究、市场趋势、客户画像等企业关键领域提供必要决策支持。


互联网行业数据分析的主要对象是产品、运营和用户,其次是市场和客户。以数据为依据,为产品策略、运营战术、用户研究、市场趋势、客户画像等企业关键领域提供必要决策支持。image.png从事运营工作:活动上线前,需要做A/B测试,通过数据反馈结果,严重活动是否符合预期;活动上线后,还要分析实时数据,进行调整推广节奏和推广动作。

从事产品工作:设计产品时需要用数据来分析用户行为,挖掘用户需求;产品诞生后,还要用数据监测用户行为、测试产品功能,促进产品迭代。

从事市场工作:需要通过一系列的手段去引入流量,但是有的渠道效果好,有的渠道效果差;我们需要收集每个渠道的投入,用数据分析来分辨渠道资源的效果,对比各大渠道对业务的影响,从中找出最优渠道……

从企业的招聘需求中也可以看出来,不论是做产品、运营还是市场,如果是想要进大厂,数据分析能力就更是标配了。image.png 然而,我们通过调研发现,80%的0-3岁互联网人没有系统的学习过数据分析,缺乏数据思维,处于比较浅层面的对比,甚至会出现“预估”的情况:只会"统计",不会分析:把各种指标数据统计到一起,却不知道应该如何分析,无法得出有效结论;

没人请教,自学难:遇到分析问题没有专业人士请教,只能常在知乎、百度寻找干货,却无法套用到实际工作中;

工具使用不熟练:遇到量大的数据不会用Excel操作,复制粘贴操作,既浪费时间,又容易出错;

缺乏数据思维:没有系统学过数据分析,不知道如何拆解数据指标,多维度衡量产品、运营现状;image.png

你适合学习大数据分析吗?image.png最近,我为我的粉丝整理一套2020年最新录制的大数据分析必备的学习资料,这套资料内容非常详细全面非常适合想要进入大数据分析领域的人学习。


相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
57 4
|
6天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
30 2
|
1月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
66 5
|
2月前
|
存储 大数据 测试技术
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
在大数据环境中,数据存储格式直接影响查询性能和成本。本文探讨了 Parquet、Avro 和 ORC 三种格式在 Google Cloud Platform (GCP) 上的表现。Parquet 和 ORC 作为列式存储格式,在压缩和读取效率方面表现优异,尤其适合分析工作负载;Avro 则适用于需要快速写入和架构演化的场景。通过对不同查询类型(如 SELECT、过滤、聚合和联接)的基准测试,本文提供了在各种使用案例中选择最优存储格式的建议。研究结果显示,Parquet 和 ORC 在读取密集型任务中更高效,而 Avro 更适合写入密集型任务。正确选择存储格式有助于显著降低成本并提升查询性能。
416 1
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
|
8天前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
49 14
|
14天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
46 2
|
15天前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
15天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
18天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
1月前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
67 1