2016年大数据在金融领域的10大趋势

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

2015 年对于银行和金融业公司来说是一个开局之年,在这一年中他们继续用大数据来帮助他们进行业务和组织架构的演进。现在,放眼2016年将要面对的,我们猜测金融服务公司为了利益最大化进而不断整合大数据环境而言,他们面前的路依旧漫长。 银行家们也正在起草大数据战略,制定入门和随后的用例。


对于银行来说,大数据主要还是围绕提高客户情商,减少风险,符合监管。在可见的未来处于第一梯队的大型金融集团都会继续围绕大数据展开各种动作。在低端市场,一些中小型的公司(经纪、资产管理、区域银行、顾问等)能够更快速的适应大数据平台(云平台和本地部署),这些都帮助他们构建能够支撑复杂业务的大型系统,同时这些系统也都是比他们大的竞争对手所必须面对的。这块市场因此能够快速成长(对比那些大银行所关注的长期而规范的和成本为主的项目)能够马上看到更加直接收入贡献和战略(概念/实验)项目 。


对于大数据软件提供商和服务提供商来说,市场已经到了一个银行业必须要接受的爆发点上。大家都要在高可用、大规模、内部管控和面向客户活动方面有一些措施。同时,这些内容和我们看到的云技术的发展路线有所不同。


下面给大家展示几个大数据技术发展方向的预测,和这些发展带来的变化如何影响金融服务业:


  1. 机器学习将会加速发展,同时大批量的应用在反欺诈和风控领域。数据科学家人才本身的供需关系将会朝着更加平衡的方向发展。在反欺诈和风控领域将会使用更加成熟的技术来改善风控模型本身,并且加速发展实时分析监控和预警。这些快速的发展和变化会来自于业界领导者的传授和在现实世界的实践与应用。


  2. 业界领导和进步缓慢者之间的差距将会越来越大。每一年我们都能看到银行为了适应新技术而加大油门快速前进,同时在组织架构方面非常保守。业务和用户在2016年都将要激增而且会非常多变,结果就是在广阔的市场导致更强的可观察到的和可衡量的业务大量回归(不只是成本的下降)。


  3. 数据治理,血统和其他的合规性方面问题将会更加深入的集成到大数据平台中去。为了找到一个能够在合规性方面提供更强大功能的数据解决方案,许多银行都购买或者开发了 单点解决方案,再不行就是用已经运行很多年的传统解决方案平台,但是这些解决方案都无法应对现今大规模爆发的数据。幸亏现在有越来越多的Hadoop改进方案来进行数据治理,改善血统和提供数据质量。更重要的是,这些新数据平台能够超越Hadoop平台达到传统数据存储的效果,并且做的更加大容量,更快,且在细节上达到合规性要求。此外在2016年我们将继续看到为融合监管和风险控制(RDARR)中心服务的叫做“数据湖”方面的更多进展。


  4. 金融服务业正在利用物理网数据方面做出努力。这一波浪潮正是抓住大数据吸引力炒作/发力的好时机,同时金融服务应用的为题也很多。物联网数据在许多行业应用中已经实践(电信,零售,制造业)这些行业驱动了物联网的数据的需求并且处于垄断地位。那么对于银行来说物联网数据是否能够用在ATM或者移动银行业务中?这些都是在明年的多渠道实时数据流中值得探索的。例如,实时,多渠道的商业行为可以使用物联网数据对银行零售客户在正确的时间点提供适时的报价 。或许我们反过来想想,金融公司可以将自己的服务内嵌植入到用户的某种“东西”或者设备或者其他和客户接触的点上,不在那些交易设施 上,而是在家。


  5. 与贸易,投资组合管理和咨询申请集成成为软件供应商的一个显著特点。 鼓吹与“从大数据获得更多利益”相关的新闻头条越奏越响。最终,这些观点都将被金融终端用户、可见的利益(或者不可见、无法衡量的利益)还有易用性等因素决定。大数据平台的建设核心将要提供的就是一个桥梁就是大数据,并且将其锐化突出。我们已经看到了市场数据供应商最喜欢的动作,但是并没有其他商业用户的应用,那么朝这个方向努力(CRM,OMS/EMS等)。


  6. 风险控制和监管数据管理将继续成为顶级大数据平台的重要任务。增长和用户中心相关的商业行为将稳坐战略合作列表第一的位置,会有很多的公司会把未来的战略与大数据关联起来。不论你的银行是不是发达的数据驱动的公司不断变化发展的规律还是面对大量的挑战,朝着预测发展的分析都是一条漫长的道路,同时也是一个必要的需求和被公司首席高官确认有意义的事。除非老天开恩或者监管机构放松要求,否则风险控制和监管仍然是2016年所有金融机构的首要挑战。


  7. 金融服务业采用Hadoop作为关系型数据库进行存取将会大大增加。大家在不同的时间使用了相同的技术之间并没有任何差别。 “长尾”效应还很遥远,但是中小型银行将会从Hadoop的以下几方面获益:

    供应商将整合整套集成解决方案,服务,平台

    用户社区持续成长,并能提供一个基础参考作为突破口

    数据降载成为当今Hadoop一个“经典”应用(相对来讲),同时许多大数据专家继续再更大的数据集合上前进,未来将会有更多的普通人加入到大数据应用的行列。 

  8. 金融服务“大数据终结app”理论在市场得到了越来越多的认可。FinTech 已经孵化了2-3年,形成了大数据平台和用户间从前端到终端的连接。希望看到更多的银行作为证明概念来运行这些应用,这些实践将检验软件所提供的“完整解决方案”的基础。前端到终端和后端都应进行整合,而不是分割。大家可以看到市场迅速的从服务集成扩展到后端,这将迎来银行业的关于如何定位“大数据软件”和“传统软件” 的激烈讨论。 

  9. 变化来了,获得前进动力的最后一次机会。随着越来越多的高可靠大数据平台的出现,安全专家,深层次的丰富元数据,集成LEI和其他标准成为一个严峻的现实。传统的数据的方法是有效的,只是需要一些思想来充分利用新的解决方案-例如处理架构和数据建模。更深一层,随着大数据工作在前台,市场营销和风险控制方面形成的工作模式,我们能够看出这里面在办公的中后期业务上有明显和巨大的数据重叠部分,这些重叠能够很容易的应用在现有的数据湖中。我们预计,在中等的商业风险评估与性能相关的大数据的商业行为将迅速增加。更进一步,我们将看到关于如何切实带来后台功能的更深层次的交流(合作等)。


  10. 银行的机构方将开始采用并从零售业务的方式来获取线索增进对于市场目标客户的了解。有一些纯B2B的公司利用大数据来改善客户商情,但是大部分时候他们处于B2C业务的不利地位,信用卡业务,银行零售业,财富管理或者借贷业务。一个简单的跨界就是基金的配置(大型共同基金经理)从财富顾问网络和经纪人相互作用来改善数据收集的过程,同时也提高产品利用率。一旦被从客户群中移除,这对于共同基金通常是非常重要的,所以加强对于机构客户的理解显得尤为重要。 


信任仍然是许多大型银行的使用新供应商“大数据”的主要因素。换句话说,当你展望2016年,将会有很大的来自管理层的推动力,来把大数据项目移出IT然后放到商业用户手中。为了达成目的,我们需要考虑架构,功能,速度,可用性,安全性等问题。与往常一样,采用传统的严谨性以全新的架构布局并没有改变,传统架构将的成本和缓慢的进展将开始在新的Hadoop表现和融合的大数据的架构过程中逐步展现。 


更进一步,将来一定会有更加强大的工具来处理现有的工作,例如数据治理,数据质量,参考数据管理,标准。这将要求各方持续的教育,即那些IT意外的继续教育。用以了解市场的快速发展。


最后,针对平衡开源和供应商解决方案将展开长期讨论。不是所有的开源项目设计之初就符合机构客户,开源项目传递了一种敏捷性需求开发—每个银行的需求都在不停的变化,为大数据找到合适的点才是更加重要的。总而言之,2016年的市场将会不断前行,混乱随之减少,同时会使大数据的海洋变得风平浪静。


原文发布时间为:2016-02-04

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
8月前
|
存储 JSON 大数据
大数据离线数仓---金融审批数仓
大数据离线数仓---金融审批数仓
616 1
|
2月前
|
机器学习/深度学习 数据采集 搜索推荐
大数据与金融风控:信用评估的新标准
【10月更文挑战第31天】在数字经济时代,大数据成为金融风控的重要资源,特别是在信用评估领域。本文探讨了大数据在金融风控中的应用,包括多维度数据收集、智能数据分析、动态信用评估和个性化风控策略,以及其优势与挑战,并展望了未来的发展趋势。
ly~
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
170 3
|
8月前
|
机器学习/深度学习 人工智能 大数据
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
353 6
|
8月前
|
监控 搜索推荐 大数据
大数据在金融领域的应用有哪些?请举例说明。
大数据在金融领域的应用有哪些?请举例说明。
143 0
|
运维 大数据 数据挖掘
SelectDB x 白鲸开源金融大数据解决方案正式发布!
飞轮科技联合白鲸开源,针对金融行业大数据实时分析的场景共同推出高效实用的解决方案。
|
大数据
《金融级别大数据平台的多租户隔离实践》电子版地址
金融级别大数据平台的多租户隔离实践
97 0
《金融级别大数据平台的多租户隔离实践》电子版地址
|
存储 运维 Cloud Native
|
SQL 分布式计算 算法
传统金融IT男转型互联网大数据码农,图啥?
传统金融IT男转型互联网大数据码农,图啥?
|
机器学习/深度学习 人工智能 算法