机器学习:分类模型的评估精确率Presicion和召回率Recall

简介: 机器学习:分类模型的评估精确率Presicion和召回率Recall

estimator.score()

准确率:预测结果正确的百分比

混淆矩阵

预测结果Predicted Condition

正确标记 True Condition

预测结果 正例 假例
真实 正例 真正例TP 伪反例FN
结果 假例 伪正例FP 真反例TN

T True

F False

P Positive

N Negative

精确率 Presicion

预测结果为正中真实为正的比例(查的准)

召回率 Recall

真实为正中预测结果为正的比例(查的全,对正样本的区分能力)

F1-score 模型的稳健性

F1=(2TP)/(2TP + FN + FP)

= (2 x Precision x Recall)/(Precision + Recall)

代码示例

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# 如果获取不到就下载
data = fetch_20newsgroups(subset="all")
# 数据分割
X_train, X_test, y_train, y_test = train_test_split(
    data.data, data.target, test_size=0.33, random_state=42
)
# 特征抽取
tfidf = TfidfVectorizer()
# 以训练集中的词列表对每篇文章做重要性统计
X_train = tfidf.fit_transform(X_train)
print(tfidf.get_feature_names())
X_test = tfidf.transform(X_test)
# 朴素贝叶斯算法预测,alpha是拉普拉斯平滑系数
mlt = MultinomialNB(alpha=1.0)
mlt.fit(X_train, y_train)
y_predict = mlt.predict(X_test)
score = mlt.score(X_test, y_test)
print("socre: {}".format(score))
# socre: 0.83
# 分类报告
print(classification_report(y_test, y_predict, target_names=data.target_names))
"""
                          precision    recall  f1-score   support
             alt.atheism       0.86      0.71      0.78       260
           comp.graphics       0.86      0.77      0.81       321
 comp.os.ms-windows.misc       0.82      0.83      0.82       314
 ...
             avg / total       0.87      0.83      0.83      6220
"""


相关文章
|
1月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
463 109
|
2月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
224 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
5月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
2月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
3月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
258 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
3月前
|
机器学习/深度学习 人工智能 算法
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。
|
3月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
3月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
4月前
|
存储 人工智能 运维
企业级MLOps落地:基于PAI-Studio构建自动化模型迭代流水线
本文深入解析MLOps落地的核心挑战与解决方案,涵盖技术断层分析、PAI-Studio平台选型、自动化流水线设计及实战构建,全面提升模型迭代效率与稳定性。
182 6