数据挖掘技术与经典案例分析

简介:

内容简介:在这个信息爆炸的年代,产生数据的渠道迅速增加,数据库中的数据量也成指数增加,大数据从2012年成为一个热门词汇,它之所以受到人们的关注和谈论,是因为隐藏在它后面数以万亿美元的市场机会。那么如何从收集到的数据中找到有用信息的方法变得尤为重要,如何使数学算法与大数据有机的结合起来,并应用到城乡规划中成为目前城市规划中研究热点,而数据挖掘就是其中最关键的技术。


本次演讲通过回答下面的五个问题:

1.什么是数据挖掘?
2.为什么要用数据挖掘?
3.数据挖掘的流程是什么?
4.数据挖掘有哪些方法?
5.数据挖掘使用在哪些领域?

演讲让听众对数据挖掘有一个全面的认识,然后结合具体案例阐述数据挖掘的相关应用,期待大家对数据挖掘有一个直观的印象,并在规划行业得到充分的应用。


原文发布时间为:2015-09-04

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关文章
|
2月前
|
搜索推荐 数据挖掘 UED
分享一些利用商品详情数据挖掘潜在需求的成功案例
本文介绍了四个成功利用商品详情数据挖掘潜在需求的案例:亚马逊通过个性化推荐系统提升销售额;小米通过精准挖掘用户需求优化智能硬件生态链;星巴克推出定制化饮品服务满足用户多样化口味;美妆品牌利用数据改进产品配方和设计,制定针对性营销策略。这些案例展示了数据挖掘在提升用户体验和商业价值方面的巨大潜力。
|
4月前
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
286 0
|
4月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
本文总结了2023年第十一届泰迪杯数据挖掘挑战赛A题的新冠疫情防控数据分析,提供了32页和40页的论文以及实现代码,涉及密接者追踪、疫苗接种影响分析、重点场所管控以及疫情趋势研判等多个方面,运用了机器学习算法和SEIR传染病模型等方法。
74 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
|
4月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛A题的解题思路和Python代码实现,涵盖了新冠疫情防控数据的分析、建模方案以及数据治理的具体工作。
83 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
|
4月前
|
数据采集 自然语言处理 数据可视化
基于python数据挖掘在淘宝评价方面的应用与分析,技术包括kmeans聚类及情感分析、LDA主题分析
本文探讨了基于Python数据挖掘技术在淘宝评价分析中的应用,涵盖了数据采集、清洗、预处理、评论词频分析、情感分析、聚类分析以及LDA主题建模和可视化,旨在揭示淘宝客户评价中的潜在模式和情感倾向,为商家和消费者提供决策支持。
101 0
|
4月前
|
SQL 开发框架 大数据
【数据挖掘】顺丰科技2022年秋招大数据挖掘与分析工程师笔试题
顺丰科技2022年秋招大数据挖掘与分析工程师笔试题解析,涵盖了多领域选择题和编程题,包括动态规划、数据库封锁协议、概率论、SQL、排序算法等知识点。
99 0
|
4月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】PCA 主成分分析算法过程及原理讲解
主成分分析(PCA)的原理和算法过程。
105 0

热门文章

最新文章

下一篇
DataWorks