到2026年,利用 AI 的 AR 应用程序用户将超过两亿

简介: ABI Research 预计,到 2026 年,将有超过 2 亿活跃用户参与以某种形式利用人工智能 (AI) 的增强现实 (AR) 应用程序。

ABI Research 预计,到 2026 年,将有超过 2 亿活跃用户参与以某种形式利用人工智能 (AI) 的增强现实 (AR) 应用程序。这可能包括基础 AR 技术,如机器视觉和同步定位和映射 (SLAM) 跟踪,以及增值应用程序,如图像和对象识别、语义标记和专家系统分析。
530fe22675c4ea1ff4c0ece14602f19b.jpg

“人工智能、机器学习 (ML) 和 AR 的结合是一种非常有效的结合,”ABI Research 增强和虚拟现实研究主管 Eric Abbruzzese 说。 “从本质上讲,随着可用数据的增加,增强现实的功能会变得更强大。这些数据来自位置数据、传感器数据、环境动态以及物联网 (IoT) 等集成系统。 AR 还可以作为这些数据类型的数据收集推动者。将 AI 融入这些领域,可为市场带来高价值且通常是关键的 AR 功能。”

AR 对视觉和空间数据的需求通常依赖于 AI 支持技术,以可操作的方式捕获、处理和背景化该数据。因此,这两个市场继续重叠并创造大量机会。

根据 ABI Research 的说法,虽然 AR 本身并不需要机器视觉——在辅助现实硬件和应用程序的情况下——但它越来越成为大多数用例的必需品。支持 SLAM 跟踪的机器视觉允许在空间中进行精确的用户跟踪,还可以捕获空间数据供以后使用。

ABI Research 预计,到2026 年配备本地端 AI 芯片组的 AR 智能眼镜出货量将接近 2000 万部,占当年智能眼镜总出货量的 70%。 AI 的本地处理在当今最为常见,但对于某些 AI 处理类型,处理位置正越来越多地转移到云端。例如,SLAM 跟踪可以留在设备上以获得可靠性和低延迟,但语义标签可以位于云上,在非敏感延迟场景中为该类型的数据牺牲延迟。云计算和混合计算方案可实现最佳 AI 处理性能,而设备性能和电池寿命、灵活性取决于应用程序和环境。

多年来,AR 领域的许多公司一直在以多种方式利用 AI,而且这种使用在公司数量和使用范围方面都在增长。在硬件层面,高通在他们的 XR 芯片组系列中加入了专门针对 AR 和 VR 的 AI 增强功能——例如,以提高跟踪精度和性能。 NVIDIA 正在其 CloudXR 产品以及 Omniverse 中利用 AI,后者最近宣布使用 AI 进行自动化模拟和内容创建元素。 PTC 和 Teamviewer 等企业玩家使用机器视觉进行设备跟踪以及后端处理、分析、预测流程等。

这些元素总结为一种与整个增强现实价值链相协调的有价值的使能技术。

“指向用例、应用程序、服务或垂直领域,人工智能已经被利用,其作用将在未来 5 到 10 年内发生重大变化。 AI 增强了增强现实的常见附加价值,包括提高员工效率和安全性以及新颖的协作和远程启用功能。更准确和可预测的跟踪和数据收集、自动化和有针对性的内容交付、新发现的数据和使用趋势都会有所贡献,”Abbruzzese 总结道。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

目录
相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
40 1
|
8天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
19天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
128 48
|
9天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
49 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
5天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
26 4
|
14天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
51 10
|
7天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗诊断中的应用与挑战
本文旨在揭示人工智能(AI)技术如何革新医疗诊断领域,提高疾病预测的准确性和效率。通过分析AI在图像识别、数据分析等方面的应用实例,本文将探讨AI技术带来的便利及其面临的伦理和法律问题。文章还将提供代码示例,展示如何使用AI进行疾病诊断的基本过程。
|
15天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
下一篇
无影云桌面