谷歌深度学习找到 AI 芯片关键路径,机器学习开始用于优化芯片架构

简介: 谷歌深度学习找到 AI 芯片关键路径,机器学习开始用于优化芯片架构

Google Brain 总监 Jeff Dean 曾指出,在某些情况下,人工智能的深度学习形式在如何布置芯片中的电路方面可以比人类做出更好的决策。

本月,谷歌在 arXiv 文件服务器上发表了一篇名为“ Apollo: Transferable Architecture Exploration”的论文。Apollo 计划代表了一种有趣的发展,它超越了 Jeff Dean 一年前所讲的东西。相比之下,Apollo 计划执行的是“架构探索”而不是平面图。


Apollo 计划是超越“布局和路线”的“架构探索”

这篇论文的主要作者 Amir Yazdanbakhsh 说:“在计算堆栈中,架构探索比布局路线的探索要高级得多。”

在 Jeff Dean 当时给出的例子中,机器学习可以用于一些低层次的设计决策,即“布局和路线”。在位置和路径上,芯片设计者使用软件来确定构成芯片操作的电路的布局,类似于设计建筑物的平面图。

而芯片的体系结构是芯片功能元素的设计,包括如何交互,以及软件程序员应该如何访问这些功能元素。

例如,经典的 Intel x86 处理器具有一定数量的片上存储器、专用的算术逻辑单元和一些寄存器等等。这些部分组合在一起的方式赋予了所谓的英特尔架构的意义。

当被问及 Jeff Dean 的描述时,Yazdanbakhsh 表示,“我们的工作和布局规划项目与 Jeff Dean 所讲的是相互配合且互补的。”

Yazdanbakhsh 说:“我认为,在架构探索中,存在更高的性能改进余地。”

Yazdanbakhsh 和他的同事们称 Apollo 为“第一个可转移的架构探索基础结构”,这是第一个在探索可能的芯片架构方面做得更好的程序,它在不同的芯片上工作得越多,越能更好地探索可能的芯片体系结构,从而将学到的知识转移到每个新任务上。


探索不同开发方法,根据工作负载进行调整


Yazdanbakhsh 和团队正在开发的芯片本身就是用于 AI 的芯片,称为加速器。该芯片与 Nvidia A100“ Ampere” GPU,Cerebras Systems WSE 芯片以及目前投放市场的许多其他启动部件属于同一类。因此,使用 AI 设计运行 AI 的芯片具有很好的对称性。

鉴于任务是设计一个 AI 芯片,Apollo 程序正在探索的架构是适合运行神经网络的架构。这意味着大量的线性代数,许多简单的数学单位,执行矩阵乘法和求和的结果。

团队将挑战定义为找到适合给定 AI 任务的这些数学块的正确组合之一。他们选择了一个相当简单的 AI 任务,即一个称为 MobileNet 的卷积神经网络,由谷歌的 Andrew g. Howard 和他的同事在 2017 年设计。

此外,他们还使用几个内部设计的网络测试工作负载,这些网络用于完成目标检测和语义分割等任务。

通过这种方式,目标就变成了: 对于一个给定的神经网络任务,芯片的结构的正确参数是什么?

整个搜索过程包括对超过 4.52 亿个参数进行排序,其中包括将使用多少被称为处理器元素的数学单元,以及对于给定的模型有多少参数内存和激活内存是最优的。


Apollo 是一个框架,这意味着它可以采用文献中为所谓的黑盒优化开发的各种方法,并且它可以根据特定的工作负载调整这些方法,并比较每种方法在解决目标方面的表现。

在另一个很好的对称性中,Yazdanbakhsh 采用了一些优化方法,这些方法实际上是为开发神经网络架构而设计的。包括 2019 年由 Quoc v. Le 和他在谷歌的同事开发的所谓的进化方法; 基于模型的强化学习方法,以及由 Christof Angermueller 和其他人在 Google 上为“设计”DNA 序列而开发的所谓的基于人口的方法集合; 以及贝叶斯优化方法。


进化和基于模型的方法优于随机选择和其他方法

Apollo 包含了对称性的主要层次,将为神经网络设计和生物合成设计的方法结合起来,设计可能反过来用于神经网络设计和生物合成的电路。

比较所有这些优化,这正是 Apollo 框架的亮点所在。它的整个存在目的是有条不紊地采用不同的方法,并且告诉人们什么方法最有效。Apollo 试验结果详细说明了进化和基于模型的方法如何优于随机选择和其他方法。

但 Apollo 最引人注目的发现是,如何运行这些优化方法,可以使过程比暴力搜索法更有效率。例如,他们将基于群体的集成方法与他们所说的对体系结构方法的解决方案集的半穷尽搜索进行了比较。

Yazdanbakhsh 和他的同事们看到的是,基于人群的方法能够发现利用电路中权衡取舍的解决方案,比如计算和内存,这通常需要特定领域的知识。由于基于人群的方法是一种习得的方法,因此它能够找到半详尽搜索无法找到的解决方案。

实际上,P3BO(基于总体的黑盒优化)发现的设计比半详尽的 3k 样本搜索空间更好。这种设计使用了非常小的内存(3MB),以支持更多的计算单元。这利用了视觉工作负载的计算密集型特性,这在原始的半详尽搜索空间中是不包含的。这表明手动搜索空间工程需要半详尽的方法,而基于学习的优化方法利用大的搜索空间减少手动工作。

因此,Apollo 能够计算出不同的优化方法在芯片设计中的表现。但是,它还可以做更多的事情,可以运行所谓的迁移学习来展示如何反过来改进这些优化方法。

通过运行优化策略以将芯片设计改进一个设计点,例如以毫米为单位的最大芯片尺寸,这些实验的结果便可以作为输入输入到随后的优化方法中。Apollo 团队发现,各种优化方法通过利用初始或种子优化方法的最佳结果,提高了它们在类似区域约束电路设计这样的任务中的性能。

所有这些必须被这样一个事实所包括: 为 MobileNet 或任何其他网络或工作负载设计芯片受设计过程对给定工作负载的适用性的限制。

事实上,该论文的作者之一,Berkin Akin 帮助开发了 MobileNet 版本 MobileNet Edge,他指出优化是芯片和神经网络优化的产物。

Berkin Akin 在去年和同事共同完成的一篇论文中写道:“神经网络架构必须了解目标硬件架构,以优化整体系统性能和能源效率。”


当从神经网络结构设计中分离出来时,硬件设计的价值有多大?

Berkin Akin 认为,Apollo 对于给定的工作量来说可能已经足够了,但是芯片和神经网络之间的协同优化,将在未来产生其他的好处。

他说:“在某些情况下,我们需要为给定的一组固定神经网络模型设计硬件。这些模型可以是来自硬件目标应用程序域的已经高度优化的代表性工作负载的一部分,也可以是定制加速器用户所需的一部分。在这项工作中,我们正在处理这种性质的问题,我们使用机器学习来为给定的工作负载套件找到最好的硬件架构。然而,在某些情况下,联合优化硬件设计和神经网络体系结构是具有灵活性的。事实上,我们有一些正在进行的工作,这样的联合优化,我们希望能够产生更好的权衡。”

最后的结论是,即使芯片设计正在受到人工智能新工作负载的影响,芯片设计的新进程可能对神经网络的设计产生可衡量的影响,这种辩证法可能在未来几年以有趣的方式发展。


相关文章
|
2月前
|
人工智能 Cloud Native Java
书本大纲:从芯片、分布式到云计算AI时代
本文深入探讨并发编程、JVM原理、RPC框架、高并发系统、分布式架构及云原生技术,涵盖内存模型、同步机制、垃圾回收、网络协议、存储优化、弹性伸缩等核心议题,揭示多线程运行逻辑与高并发实现路径,助你掌握现代软件底层原理与工程实践。
100 6
|
1月前
|
人工智能 自然语言处理 机器人
AI电话客服的服务质量提升路径:关键技术与典型应用场景解析
AI电话客服正从基础语音工具进化为能处理复杂业务的智能体。本文深入解析服务质量提升的关键技术路径与行业应用,涵盖语音识别、情感分析、多轮对话等核心技术,以及智能外呼、自动质检、客户数据分析等典型场景,助力零售、电商、制造、互联网等行业构建高效、有温度的智能客服体系,推动人机协同服务升级。
108 1
|
18天前
|
人工智能 边缘计算 搜索推荐
AI产品测试学习路径全解析:从业务场景到代码实践
本文深入解析AI测试的核心技能与学习路径,涵盖业务理解、模型指标计算与性能测试三大阶段,助力掌握分类、推荐系统、计算机视觉等多场景测试方法,提升AI产品质量保障能力。
|
3月前
|
人工智能 物联网 机器人
面向多模态感知与反思的智能体架构Agentic AI的实践路径与挑战
Agentic AI(能动智能体)代表人工智能从被动响应向主动规划、自主决策的范式转变。本文系统解析其核心架构,涵盖感知、记忆、意图识别、决策与执行五大模块,并探讨多智能体协作机制与通信协议设计。结合代码示例,展示意图识别、任务规划与异步执行的实现方式,分析该架构的优势与挑战,如高自主性与通信复杂性等问题。最后展望未来方向,包括引入RAG、LoRA与多模态感知等技术,推动Agentic AI在自动编程、机器人协作等场景的广泛应用。
面向多模态感知与反思的智能体架构Agentic AI的实践路径与挑战
|
3月前
|
机器学习/深度学习 人工智能 机器人
Meta AI Research:虚拟/可穿戴/机器人三位一体的AI进化路径
本文阐述了我们对具身AI代理的研究——这些代理以视觉、虚拟或物理形式存在,使其能够与用户及环境互动。这些代理包括虚拟化身、可穿戴设备和机器人,旨在感知、学习并在其周围环境中采取行动。与非具身代理相比,这种特性使它们更接近人类的学习与环境交互方式。我们认为,世界模型的构建是具身AI代理推理与规划的核心,这使代理能够理解并预测环境、解析用户意图及社会背景,从而增强其自主完成复杂任务的能力。世界建模涵盖多模态感知的整合、通过推理进行行动规划与控制,以及记忆机制,以形成对物理世界的全面认知。除物理世界外,我们还提出需学习用户的心理世界模型,以优化人机协作。
150 3
|
2月前
|
机器学习/深度学习 人工智能 供应链
AI赋能采购管理工具全解析:智能寻源、预测分析与风险控制的实践路径
本文探讨了采购管理工具从传统系统向智能化演进的发展路径,分析了现代采购系统的技术架构与核心功能,并构建了包含28项指标的选型评估体系。随着AI、区块链、数字孪生等技术的应用,采购管理正迈向智能预测与自动响应的新阶段。
385 0
|
9月前
|
机器学习/深度学习 人工智能 算法
现身说法,AI小白的大模型学习路径
写这篇文章的初衷:作为一个AI小白,把我自己学习大模型的学习路径还原出来,包括理解的逻辑、看到的比较好的学习材料,通过一篇文章给串起来,对大模型建立起一个相对体系化的认知,才能够在扑面而来的大模型时代,看出点门道。
945 79
|
8月前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
303 6

热门文章

最新文章