淘系产业级移动应用智能测试最新方案MonkeyBot公开!测试效能提升3倍以上

简介: 淘系产业级移动应用智能测试最新方案MonkeyBot公开!测试效能提升3倍以上

作者|居反

111.gif

产业级移动应用测试面临操作系统碎片化人工测试负担过重、功能复杂场景繁多、自动化测试探索效率低效的问题。淘系技术质量团队与北京大学讲席教授谢涛老师团队合作,在业界提出了首个基于计算机视觉(和多模态强化学习)的自动化视觉测试框架Monkeybot,解决了遍历测试效率低下,自动测试工具难以跨平台使用的问题,为移动应用测试提供了通用高效的解决方案。并于21年9月底在QECon全球软件质量效能大会上对行业公开了这一技术方案。随后,在10月份云栖大会上谢涛教授对MonkeyBot落地效果进行了分享展示。

1.jpg

Monkeybot在阿里巴巴集团包括淘宝、千牛等在内的十余个大型产业移动应用上落地部署,服务于他们的日常测试和质量保障,特别是双十一等重要场景的质量保障和测试工作中,并通过软件绿色联盟向全行业提供用户体验测试,智能探索测试,智能验证等服务。已在Android、iOS、鸿蒙等操作系统落地实践,推动测试效能提升3倍以上。

接下来一起看下我们是如何来实现的吧。

研究背景

手淘拥有十亿级用户,产品快速迭代和功能复杂多样化给质量保障工作带来巨大挑战,面临功能测试回归成本高、易漏测等问题,迫切需要一个高效智能的自动化测试方案来保障软件质量。
 解决复杂交叉场景易漏测问题

随着淘宝业务的扩大,当前手淘不仅具有购物下单的功能,还有很多其他的业务功能,比如有消息聊天、直播、逛逛、互动游戏等。不同的业务都是划分在不同的团队负责,因此各业务的上线和回归都是相对比较独立的。但是,从用户角度很难区分每个业务的边界,用户使用产品过程一定是一个多场景组合的情况,比如用户买东西的时候想跟商家沟通一下尺寸号码的问题,用户大概率会从商品详情页找到客服,然后进到聊天页面发消息;结果商家没有及时回复,下次可能会从消息tab找到会话去聊天,然后逛着逛着商家回复了又可以从新消息弹框点进去聊,聊完了可能还要返回继续逛,逛着逛着又想起一些事情要跟商家交代,于是从快捷入口进到消息再找到会话聊天。一个简单且常用的聊天功能,用户可能会有很多路径去完成,过程中也会涉及到很多消息之外的业务,对于测试同学很难全面覆盖组合场景验证,也就容易出现交叉场景漏测导致线上问题发生。

2.jpg

 解决快速迭代回归成本高问题

手淘客户端每次迭代发布各个业务都需要进行回归验证,每个月手淘至少一次正式版本发布,大概每周都有一次灰度发布,对于每一次发布都要进行至少两轮回归,每次回归至少覆盖安卓和iOS两个系统,保守计算每个月至少要做16次功能回归,每次回归都需要大量的人力成本。

为了降低回归成本,UI自动化测试广受大家喜爱,Selenium、appium、Airtest、RXT等工具陆续出现,通过维护自动化脚本来实现测试自动化,也取得了不错效果。但是随着产品快速迭代,维护自动化测试脚本仍然需要很大的人力成本和时间成本。

为了更好地为测试提效,让机器尽可能以接近用户的视角来自动执行测试流程,尽可能多地覆盖不同业务场景,受遍历测试和Monkey测试的一些启发,我们尝试让机器在给定app内自主探索,结合智能的探索策略,具备类人测试能力,实现全流程无人参与的自动化测试。
思路分析

为了让机器具备类人测试能力,我们制定了以下几个目标:首先,在执行层面我们希望一套测试工具支持多系统多平台验证;其次,测试工具需要摆脱对测试脚本依赖,具有主动理解业务的能力;最后,在理解业务的基础之上能智能做出决策执行操作,有效覆盖更多用户操作路径。

显然,这些目标是很难实现的。但是,我们仍然要在这布满荆棘的道路上摸索前行!

通过长时间的技术调研和尝试,我们找到了如下图所示的一套解决方案。第一,基于纯视觉的UI分析,不再依赖系统信息完成分析,更好的适配不同系统;第二,通过图像特征、文本信息和UI的结构等信息来对UI状态进行建模获取图文多模态信息,然后对于图片进行不同层次多粒度状态抽象,更好地理解图像业务含义;第三,引入强化学习探索策略,结合探索历史和智能探索策略,实现更有效地路径覆盖。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 监控
提升软件质量的关键路径:高效测试策略与实践在软件开发的宇宙中,每一行代码都如同星辰般璀璨,而将这些星辰编织成星系的过程,则依赖于严谨而高效的测试策略。本文将引领读者探索软件测试的奥秘,揭示如何通过精心设计的测试方案,不仅提升软件的性能与稳定性,还能加速产品上市的步伐,最终实现质量与效率的双重飞跃。
在软件工程的浩瀚星海中,测试不仅是发现缺陷的放大镜,更是保障软件质量的坚固防线。本文旨在探讨一种高效且创新的软件测试策略框架,它融合了传统方法的精髓与现代技术的突破,旨在为软件开发团队提供一套系统化、可执行性强的测试指引。我们将从测试规划的起点出发,沿着测试设计、执行、反馈再到持续优化的轨迹,逐步展开论述。每一步都强调实用性与前瞻性相结合,确保测试活动能够紧跟软件开发的步伐,及时适应变化,有效应对各种挑战。
|
4天前
|
JSON API 数据格式
淘系等商品评论Json数据格式参考,API接口测试
通过以上示例和说明,你可以了解淘系商品评论的JSON数据结构和如何使用相关API接口获取评论数据。在实际操作中,你需要参考具体的API接口文档和开放平台的相关说明进行配置和调用。
|
11天前
|
监控 测试技术 定位技术
HTTP代理IP响应速度测试方案设计与指标体系
随着数字化发展,网络安全、隐私保护及内容访问自由成为核心需求。HTTP代理因其技术优势成为热门选择。本文介绍HTTP代理IP响应速度测试方案,包括基础性能、稳定性、地理位置、实际应用、安全性测试及监控指标,推荐测试工具,并提供测试结果评估标准。
24 2
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
智能化软件测试:AI驱动的自动化测试策略与实践####
本文深入探讨了人工智能(AI)在软件测试领域的创新应用,通过分析AI技术如何优化测试流程、提升测试效率及质量,阐述了智能化软件测试的核心价值。文章首先概述了传统软件测试面临的挑战,随后详细介绍了AI驱动的自动化测试工具与框架,包括自然语言处理(NLP)、机器学习(ML)算法在缺陷预测、测试用例生成及自动化回归测试中的应用实例。最后,文章展望了智能化软件测试的未来发展趋势,强调了持续学习与适应能力对于保持测试策略有效性的重要性。 ####
|
26天前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
29 6
|
1月前
|
Web App开发 定位技术 iOS开发
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
66 1
|
2月前
|
机器学习/深度学习 存储 测试技术
从0到1:如何规划一套流量回放自动化测试方案
本文介绍了流量回放自动化测试的完整方法,从企业战略到交付的四个关键环节:Discovery(深度挖掘)、Define(定义目标)、Design(详细设计)和Delivery(交付与反馈)。通过这些步骤,帮助企业优化系统性能和稳定性,确保产品的高质量。
67 4
|
2月前
|
存储 NoSQL 大数据
大数据-51 Redis 高可用方案CAP-AP 主从复制 一主一从 全量和增量同步 哨兵模式 docker-compose测试
大数据-51 Redis 高可用方案CAP-AP 主从复制 一主一从 全量和增量同步 哨兵模式 docker-compose测试
41 3
|
5天前
|
监控 JavaScript 测试技术
postman接口测试工具详解
Postman是一个功能强大且易于使用的API测试工具。通过详细的介绍和实际示例,本文展示了Postman在API测试中的各种应用。无论是简单的请求发送,还是复杂的自动化测试和持续集成,Postman都提供了丰富的功能来满足用户的需求。希望本文能帮助您更好地理解和使用Postman,提高API测试的效率和质量。
34 11
|
1月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
62 3