最短路径问题(迪杰斯特拉)算法

简介: 最短路径问题(迪杰斯特拉)算法

定义

所谓最短路径问题是指:如果从图中某一顶点(源点)到达另一顶点(终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边的权值总和(称为路径长度)达到最小。


Dijkstra(迪杰斯特拉)算法

他的算法思想是按路径长度递增的次序一步一步并入来求取,是贪心算法的一个应用,用来解决单源点到其余顶点的最短路径问题。


Dijkstra(迪杰斯特拉)算法示例:


2020082613521451.png

第1步:初始化距离,其实指与D直接连接的点的距离。dis[c]代表D到C点的最短距离,因而初始dis[C]=3,dis[E]=4,dis[D]=0,其余为无穷大。设置集合S用来表示已经找到的最短路径。此时,S={D}。现在得到D到各点距离{D(0),C(3),E(4),F(),G(),B(),A()},其中代表未知数也可以说是无穷大,括号里面的数值代表D点到该点的最短距离。

第2步:不考虑集合S中的值,因为dis[C]=3,是当中距离最短的,所以此时更新S,S={D,C}。接着我们看与C连接的点,分别有B,E,F,已经在集合S中的不看,dis[C-B]=10,因而dis[B]=dis[C]+10=13,dis[F]=dis[C]+dis[C-F]=9,dis[E]=dis[C]+dis[C-E]=3+5=8>4(初始化时的dis[E]=4)不更新。此时{D(0),C(3),E(4),F(9),G(),B(13),A()}。

第3步:在第2步中,E点的值4最小,更新S={D,C,E},此时看与E点直接连接的点,分别有F,G。dis[F]=dis[E]+dis[E-F]=4+2=6(比原来的值小,得到更新),dis[G]=dis[E]+dis[E-G]=4+8=12(更新)。此时{D(0),C(3),E(4),F(6),G(12),B(13),A()}。

第4步:在第3步中,F点的值6最小,更新S={D,C,E,F},此时看与F点直接连接的点,分别有B,A,G。dis[B]=dis[F]+dis[F-B]=6+7=13,dis[A]=dis[F]+dis[F-A]=6+16=22,dis[G]=dis[F]+dis[F-G]=6+9=15>12(不更新)。此时{D(0),C(3),E(4),F(6),G(12),B(13),A(22)}.

第5步:在第4步中,G点的值12最小,更新S={D,C,E,F,G},此时看与G点直接连接的点,只有A。dis[A]=dis[G]+dis[G-A]=12+14=26>22(不更新)。{D(0),C(3),E(4),F(6),G(12),B(13),A(22)}.

第6步:在第5步中,B点的值13最小,更新S={D,C,E,F,G,B},此时看与B点直接连接的点,只有A。dis[A]=dis[B]+dis[B-A]=13+12=25>22(不更新)。{D(0),C(3),E(4),F(6),G(12),B(13),A(22)}.

第7步:最后只剩下A值,直接进入集合S={D,C,E,F,G,B,A},此时所有的点都已经遍历结束,得到最终结果{D(0),C(3),E(4),F(6),G(12),B(13),A(22)}.


相关文章
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
102 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
3月前
|
存储 算法 程序员
迪杰斯特拉(Dijkstra)算法(C/C++)
迪杰斯特拉(Dijkstra)算法(C/C++)
|
5月前
|
算法 定位技术
路径规划算法 - 求解最短路径 - A*(A-Star)算法
路径规划算法 - 求解最短路径 - A*(A-Star)算法
172 1
|
5月前
|
自然语言处理 算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
69 0
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
|
6月前
|
算法 Java
Java语言实现最短路径算法(Shortest Path)
Java语言实现最短路径算法(Shortest Path)
75 3
|
5月前
|
算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
123 0
|
13天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
1天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
20小时前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。

热门文章

最新文章