MySQL聚簇索引和非聚簇索引的理解

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: MySQL聚簇索引和非聚簇索引的理解

关于聚簇索引和非聚簇索引的概念很多同学找了很多教程但是仍然很迷糊。


这里给出一篇翻译,并给出我的配图,希望对大家理解有帮助。



英文原文:http://www.mysqltutorial.org/mysql-index/mysql-clustered-index/


一、聚簇索引的概念

一般来说索引就是如B-树这类可以来存储键值方便快速查找的数据结构。


聚簇索引是物理索引,数据表就是按顺序存储的,物理上是连续的。


一旦创建了聚簇索引,表中的所有列都根据构造聚簇索引的关键列来存储。


(我的理解,所有的记录行都根据聚簇索引顺序存储,如按照主键Id递增方式依次物理顺序存储)


因为聚簇索引是按该列的排序存储的,因此一个表只能有一个聚簇索引。


二、MySQL中InnoDB表的聚簇索引

每个InnoDB表都需要一个聚簇索引。该聚簇索引可以帮助表优化增删改查操作。


如果你为表定义了一个主键,MySQL将使用主键作为聚簇索引。


如果你不为表指定一个主键,MySQL讲索第一个组成列都not null的唯一索引作为聚簇索引。


如果InnoBD表没有主键且没有适合的唯一索引(没有构成该唯一索引的所有列都NOT NULL),MySQL将自动创建一个隐藏的名字为“GEN_CLUST_INDEX ”的聚簇索引。


因此每个InnoDB表都有且仅有一个聚簇索引。



所有不是聚簇索引的索引都叫非聚簇索引或者辅助索引。


在InnDB存储引擎中,每个辅助索引的每条记录都包含主键,也包含非聚簇索引指定的列。


MySQL使用这个主键值来检索局促索引。


因此应该尽可能将主键缩短,否则辅助索引占用空间会更大。


一般来说用自增的整数型列作为主键列。


-----------------------华丽分隔符-------------------


简单解释

聚簇索引和非聚簇索引




下面举例聚簇索引和非聚簇索引的区别。



注意:这里的主键是非自增的。普通索引K表示普通的索引非唯一索引。







主键是采用B+Tree的数据结构(请看左图),根据上文可以知主键为聚簇索引,物理存储是根据ID的增加排序递增连续存储的。


普通索引K也是B+Tree的数据结构(请看右图),但是它不是聚簇索引,因此为非聚簇索引或者辅助索引(聚簇索引只可能是主键,或者所有组成唯一键的所有列都为NOT NULL的第一个唯一索引,或者隐式创建的聚簇索引这三种情况)。


他的叶子节点存储的是索引列的值,它的数据域是聚簇索引即ID。




假如普通索引k为非唯一索引,要查询k=3的数据。


需要在k索引查找k=3得到id=30。


然后在左侧的ID索引树查找ID=30对应的记录R3。


然后K索引树继续向右查找,发现下一个是k=5不满足(非唯一索引后面有可能有相等的值,因此向右查找到第一个不等于3的地方),停止。


整个过程从K索引树到主键索引树的过程叫做“回表”。




更多进阶内容参考极客时间《MySQL45讲》



创作不易,如果觉得本文对你有帮助,欢迎点赞,欢迎关注我,如果有补充欢迎评论交流,我将努力创作更多更好的文章。


————————————————

版权声明:本文为CSDN博主「明明如月学长」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/w605283073/article/details/95255618

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
258 66
|
1月前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
221 9
|
3月前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
21天前
|
SQL 存储 关系型数据库
MySQL秘籍之索引与查询优化实战指南
最左前缀原则。不冗余原则。最大选择性原则。所谓前缀索引,说白了就是对文本的前几个字符建立索引(具体是几个字符在建立索引时去指定),比如以产品名称的前 10 位来建索引,这样建立起来的索引更小,查询效率更快!
88 22
 MySQL秘籍之索引与查询优化实战指南
|
1天前
|
存储 关系型数据库 MySQL
MySQL索引学习笔记
本文深入探讨了MySQL数据库中慢查询分析的关键概念和技术手段。
|
4天前
|
存储 关系型数据库 MySQL
浅入浅出——MySQL索引
本文介绍了数据库索引的概念和各种索引结构,如哈希表、B+树、InnoDB引擎的索引运作原理等。还分享了覆盖索引、联合索引、最左前缀原则等优化技巧,以及如何避免索引误用,提高数据库性能。
|
22天前
|
存储 关系型数据库 MySQL
MySQL中为什么要使用索引合并(Index Merge)?
通过这些内容的详细介绍和实际案例分析,希望能帮助您深入理解索引合并及其在MySQL中的
84 10
|
1月前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
82 18
|
1月前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
63 8
|
1月前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
86 7