DL之RNN:人工智能为你写小说——基于TF利用RNN算法训练数据集(William Shakespeare的《Coriolanus》)替代你写英语小说短文、训练&测试过程全记录

简介: DL之RNN:人工智能为你写小说——基于TF利用RNN算法训练数据集(William Shakespeare的《Coriolanus》)替代你写英语小说短文、训练&测试过程全记录

输出结果


1、test01


conce alone,

Which treason thines, and true a mercy with the man,

And honour the sheet in my stal and taste and him,

I house your servants there, and a shall some

They take a thing a bate of him, but then, but he is were

Too hath to the match her wanders there he wants.

APRINS:

The sender, and the that's all him at thy bloods;

To thee an ast that that the solet is a wealer this thar was a

will seemen of the than a court to me were burist.

LUCIANO:

I am how, an are this holds and to her sad

Woo on your toon and as thing, have the will

A show that's tears of my satate, some are.

SIR TOBY RELLA:

If the word of her of this sad of my mans are?

ALINA:

I should say thou the thee with an erms, we'll he is with his better.

ANTELIUS:

Will you have those stalling and as a wild

In that, have would say well, he will be string that all her

to here, that a bosom and at as my bands to--they

women is shall say this wears thee;

Hath see, a say me off the honour to the with

That wither and sting, and

独自一人,

哪一个叛逆变瘦,真正的仁慈,

并在我的石板上品尝这张纸,品尝他,

我把你的仆人安放在那里

他们把一件事拿给他听,但他现在是

她想去的地方,也有她的对手。

APRINS:

发送者,那就是他在你的血液里;

对你来说,一个让自己成为一个富人的圣地

对我来说似乎比法庭更重要。

LUCIANO:

我是如何,这是持有和她的悲伤

对你的香椿和作为事物,有意志

这是我的眼泪,有些是。

SIR TOBY RELLA:

如果她的话我的男人的这种悲伤是什么?

艾琳娜:

我应该说你是一个厄尔默斯,我们会和他更好相处。

ANTELIUS:

你会有那些失速和野性吗?

在那,有人会说,他会把她所有的绳子

到这里,那一个胸怀和我的乐队

女人应该说这穿了你;

看见了,向我告别

枯萎和刺痛,

2、test02


fort,

To hear mine aldouse, and hath have a tongue of her as mine.

SILVIA:

And so and merty to this hand,

To seal you we would take the thought in a time.

POLANIA:

I am all their mind, that this the tongue.

ANDELIO:

He thither at my badis, tink as thou

handly; and and all thy last at tell thee

Tell you sake a court of thou to my store with him of my shame

To any shild a shild and heaven as her throog

As his meant and hath to my man and sence,

I had all the witere the storal one worth.

PRINCE HENRY:

He hath something to stay.

SIR OF ORIANIO:

He have troubles here.

LAUVANICUS:

With made that the stally that to this horses, and terter.

PALIS:

Is have this true any stone to the with the sold,

I were a master, the tongue, that a sharlon on

me to he saw and may thy stallangers to streak,

The weads to the more so fiers in thee. And you think

What is, to honour to thy house at

their stays and hand, whell string, thyness would have this,

A soul to-news would be the his hands.

He love you

堡垒,

听我的话,她有我的舌头。

SILVIA:

所以,梅蒂,这只手,

为了封你,我们会在一段时间内接受这个想法。

POLANIA:

我都是他们的头脑,这就是舌头。

ANDELIO:

他在我的坏蛋那里,丁克如你

你最后一次告诉你

你把我的羞辱告诉你我的商店

对任何一个阴霾和天堂作为她的悸动

正如他对我的男人和我所拥有的,

我拥有所有值得收藏的东西。

PRINCE HENRY:

他有事要留下。

奥里亚尼奥爵士:

他这里有麻烦。

LAUVANICUS:

就这样把那匹马吓了一跳。

PALIS:

是真的有什么石头卖给谁,

我是一个大师,舌头,一个沙龙

我见他,愿你的斯塔兰格连任,

在你身上,维斯的音符越来越高。你认为

什么是荣耀你的家

他们的停留和手,弦,thyess都有这个,

新闻的灵魂是他的手。

他爱你

监控模型





训练过程全记录


2018-10-13 17:05:49.402137:

step: 10/20000...  loss: 3.4659...  0.1860 sec/batch

……

step: 1000/20000...  loss: 2.0612...  0.1168 sec/batch

……

step: 2000/20000...  loss: 1.9092...  0.1278 sec/batch

……

step: 3000/20000...  loss: 1.8643...  0.1283 sec/batch

……

step: 10000/20000...  loss: 1.8001...  0.1329 sec/batch

……

step: 15000/20000...  loss: 1.7402...  0.1689 sec/batch

step: 15010/20000...  loss: 1.8033...  0.2306 sec/batch

step: 15020/20000...  loss: 1.8284...  0.1499 sec/batch

step: 15030/20000...  loss: 1.7952...  0.1359 sec/batch

step: 15040/20000...  loss: 1.7906...  0.1514 sec/batch

step: 15050/20000...  loss: 1.7777...  0.1053 sec/batch

step: 15060/20000...  loss: 1.7665...  0.1298 sec/batch

step: 15070/20000...  loss: 1.7931...  0.1183 sec/batch

step: 15080/20000...  loss: 1.8027...  0.1404 sec/batch

step: 15090/20000...  loss: 1.8116...  0.1238 sec/batch

step: 15100/20000...  loss: 1.7969...  0.1108 sec/batch

……

step: 19800/20000...  loss: 1.8298...  0.1233 sec/batch

step: 19810/20000...  loss: 1.8231...  0.1228 sec/batch

step: 19820/20000...  loss: 1.7674...  0.1329 sec/batch

step: 19830/20000...  loss: 1.7872...  0.1434 sec/batch

step: 19840/20000...  loss: 1.8333...  0.1228 sec/batch

step: 19850/20000...  loss: 1.6446...  0.1464 sec/batch

step: 19860/20000...  loss: 1.8021...  0.1509 sec/batch

step: 19870/20000...  loss: 1.8217...  0.1168 sec/batch

step: 19880/20000...  loss: 1.7298...  0.1178 sec/batch

step: 19890/20000...  loss: 1.6948...  0.1293 sec/batch

step: 19900/20000...  loss: 1.7582...  0.1253 sec/batch

step: 19910/20000...  loss: 1.8246...  0.1414 sec/batch

step: 19920/20000...  loss: 1.7258...  0.1103 sec/batch

step: 19930/20000...  loss: 1.8216...  0.1544 sec/batch

step: 19940/20000...  loss: 1.7866...  0.1243 sec/batch

step: 19950/20000...  loss: 1.7673...  0.1088 sec/batch

step: 19960/20000...  loss: 1.7285...  0.1088 sec/batch

step: 19970/20000...  loss: 1.7658...  0.1073 sec/batch

step: 19980/20000...  loss: 1.8054...  0.1198 sec/batch

step: 19990/20000...  loss: 1.7714...  0.1128 sec/batch

step: 20000/20000...  loss: 1.7530...  0.1228 sec/batch

训练的数据集


           《科利奥兰纳斯》是莎士比亚晚年撰写的一部罗马历史悲剧,讲述了罗马共和国的英雄马歇斯(被称为科利奥兰纳斯),因性格多疑、脾气暴躁,得罪了公众而被逐出罗马的悲剧。作者以英雄与群众的关系为主线,揭示出人性的弱点。


1、部分章节


First Citizen:

Before we proceed any further, hear me speak.

All:

Speak, speak.

First Citizen:

You are all resolved rather to die than to famish?

All:

Resolved. resolved.

First Citizen:

First, you know Caius Marcius is chief enemy to the people.

All:

We know't, we know't.

First Citizen:

Let us kill him, and we'll have corn at our own price.

Is't a verdict?

All:

No more talking on't; let it be done: away, away!

Second Citizen:

One word, good citizens.

First Citizen:

We are accounted poor citizens, the patricians good.

What authority surfeits on would relieve us: if they

would yield us but the superfluity, while it were

wholesome, we might guess they relieved us humanely;

but they think we are too dear: the leanness that

afflicts us, the object of our misery, is as an

inventory to particularise their abundance; our

sufferance is a gain to them Let us revenge this with

our pikes, ere we become rakes: for the gods know I

speak this in hunger for bread, not in thirst for revenge.

Second Citizen:

Would you proceed especially against Caius Marcius?

All:

Against him first: he's a very dog to the commonalty.

Second Citizen:

Consider you what services he has done for his country?

First Citizen:

Very well; and could be content to give him good

report fort, but that he pays himself with being proud.

Second Citizen:

Nay, but speak not maliciously.

First Citizen:

I say unto you, what he hath done famously, he did

it to that end: though soft-conscienced men can be

content to say it was for his country he did it to

please his mother and to be partly proud; which he

is, even till the altitude of his virtue.

Second Citizen:

What he cannot help in his nature, you account a

vice in him. You must in no way say he is covetous.

First Citizen:

If I must not, I need not be barren of accusations;

he hath faults, with surplus, to tire in repetition.

What shouts are these? The other side o' the city

is risen: why stay we prating here? to the Capitol!

All:

Come, come.

First Citizen:

Soft! who comes here?

Second Citizen:

Worthy Menenius Agrippa; one that hath always loved

the people.

First Citizen:

He's one honest enough: would all the rest were so!





相关文章
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
193 6
|
19天前
|
机器学习/深度学习 算法 数据可视化
利用SVM(支持向量机)分类算法对鸢尾花数据集进行分类
本文介绍了如何使用支持向量机(SVM)算法对鸢尾花数据集进行分类。作者通过Python的sklearn库加载数据,并利用pandas、matplotlib等工具进行数据分析和可视化。
135 70
|
3月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
99 1
|
4月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
163 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
3月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
4月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
4月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
109 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
4月前
|
算法 Java C++
【贪心算法】算法训练 ALGO-1003 礼物(C/C++)
【贪心算法】算法训练 ALGO-1003 礼物(C/C++)
【贪心算法】算法训练 ALGO-1003 礼物(C/C++)
|
4月前
|
算法 C++
蓝桥 算法训练 共线(C++)
蓝桥 算法训练 共线(C++)

热门文章

最新文章