开发指南—Sequence—使用限制

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本文将介绍使用Sequence过程中的注意事项及问题处理的方法。

限制与注意事项

在使用Sequence时,您需要注意如下事项:

  • 转换Sequence类型时,必须指定START WITH起始值。
  • 单元化Group Sequence不支持作为源或目标的类型转换,也不支持起始值以外的参数修改。
  • 属于同一个全局唯一数字序列分配空间的每个单元化Group Sequence ,必须指定相同的单元数量和不同的单元索引。
  • PolarDB-X非拆分模式库(即后端仅关联一个已有的RDS物理库)、或拆分模式库中仅有单表(即所有表都是单库单表,且无广播表)的场景下执行INSERT时, PolarDB-X会自动优化并直接下推语句,绕过优化器中分配Sequence值的部分。此时INSERT INTO ... VALUES (seq.nextval, ...)这种用法不支持,建议使用后端RDS/MySQL自增列机制代替。
  • 如果将指定分库的Hint用在INSERT语句上,比如INSERT INTO ... VALUES ... 或INSERT INTO ... SELECT ...,且目标表使用了Sequence,则PolarDB-X会绕过优化器直接下推语句,使Sequence不生效,目标表最终会使用后端RDS/MySQL表中的自增机制生成id。
  • 必须对同一个表采用一种统一的方式分配自增id:或者依赖于Sequence,或者依赖于后端RDS/MySQL表的自增列;应避免两种机制混用,否则很可能会造成id冲突(INSERT时产生重复id)的情况,且难于排查。
  • 将Time-based Sequence用于表中自增列时,该列必须使用BIGINT类型。

如何处理主键冲突

如果直接在RDS中写入了数据,而对应的主键值不是PolarDB-X生成的Sequence值,那么后续让PolarDB-X自动生成主键写入数据库,可能会和这些数据发生主键冲突,您可以通过如下步骤解决此问题:

  1. 通过SHOW SEQUENCES来查看当前已有Sequence。AUTO_SEQ_ 开头的Sequence是隐式Sequence(创建表时加上AUTO_INCREMENT参数的字段产生的Sequence)。请在命令行输入如下代码:
mysql> SHOW SEQUENCES;
  1. 返回结果如下:
+---------------------+-------+--------------+------------+-----------+-------+-------+ 
| NAME                | VALUE | INCREMENT_BY | START_WITH | MAX_VALUE | CYCLE | TYPE  | 
+---------------------+-------+--------------+------------+-----------+-------+-------+ 
| AUTO_SEQ_xkv_t_item | 0     | N/A          | N/A        | N/A       | N/A   | GROUP | 
| AUTO_SEQ_xkv_shard  | 0     | N/A          | N/A        | N/A       | N/A   | GROUP | 
+---------------------+-------+--------------+------------+-----------+-------+-------+ 
2 rows in set (0.04 sec)
  1. 若xkv_t_item表有冲突,并且xkv_t_item表主键是ID,那么从PolarDB-X获取这个表最大主键值。请在命令行输入如下代码:
mysql> SELECT MAX(id) FROM xkv_t_item;
  1. 返回结果如下:
+-----------+ 
| MAX(id)   | 
+-----------+ 
| 8231      | 
+-----------+ 
1 row in set (0.01 sec)
  1. 更新Sequence表中对应的值,这里更新成比8231要大的值,比如9000,更新完成后,后续插入语句生成的自增主键将不再报错。请在命令行输入如下代码:
mysql> ALTER SEQUENCE AUTO_SEQ_xkv_t_item START WITH 9000;
相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
关系型数据库 MySQL 数据库
Docker容器数据持久化之Data Volume(数据卷)与容器数据共享(1)
Docker容器数据持久化之Data Volume(数据卷)与容器数据共享(1)
201 0
|
SQL 监控 关系型数据库
【MYSQL高级】Mysql找出执行慢的SQL【慢查询日志使用与分析】
【MYSQL高级】Mysql找出执行慢的SQL【慢查询日志使用与分析】
1951 0
|
2月前
|
运维 监控 负载均衡
|
8月前
|
Python
|
8月前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别在无人驾驶汽车中的应用
【5月更文挑战第30天】 随着人工智能技术的飞速发展,特别是深度学习在图像处理与识别领域的突破性进展,无人驾驶汽车技术正逐步成为现实。本文旨在探讨基于深度学习的图像识别技术如何为无人驾驶汽车提供核心的“视觉”功能,并分析其在实际应用中面临的挑战及解决方案。通过综合运用卷积神经网络(CNN)、递归神经网络(RNN)等模型,我们构建了一个高效的图像识别系统,该系统能够准确识别道路标志、行人、其他车辆以及多种障碍物,为无人驾驶汽车的安全行驶提供强有力的技术支持。
|
6月前
|
存储 机器学习/深度学习 人工智能
未来已来:AI技术的最新趋势与前沿探索
【7月更文第20天】在这个日新月异的时代,人工智能(AI)已经从科幻概念逐渐深入到我们日常生活的方方面面,其发展速度之快超乎想象。从基础的语音识别、图像分析到复杂的决策制定、自动驾驶,AI技术正以前所未有的力量推动着社会进步。本文将带您一同展望AI技术的未来发展方向,深入探讨量子计算、生物计算等新兴领域的前沿探索,以及它们如何重新定义AI的边界。
463 0
|
6月前
|
消息中间件 分布式计算 DataWorks
DataWorks产品使用合集之如何使用Python和阿里云SDK读取OSS中的文件
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
关系型数据库 MySQL 数据库
开发指南—Sequence—使用限制
本文将介绍使用Sequence过程中的注意事项及问题处理的方法。
109 0
|
SQL 关系型数据库 MySQL
开发指南—Sequence—概述
本文将为您介绍Sequence的相关概念和支持的类型。
134 0
|
Java Linux Shell
java使用JSch连接服务器实现命令交互
这里通过jsch远程连接linux服务器,并在控制台实现命令的交互。
626 0
java使用JSch连接服务器实现命令交互