Py之scikit-learn:机器学习Sklearn库的简介、安装、使用方法(ML算法如何选择)、代码实现之详细攻略

简介: Py之scikit-learn:机器学习Sklearn库的简介、安装、使用方法(ML算法如何选择)、代码实现之详细攻略

scikit-learn的简介


    Scikit-learn项目最早由数据科学家 David Cournapeau 在 2007 年发起,需要NumPy和SciPy等其他包的支持,是Python语言中专门针对机器学习应用而发展起来的一款开源框架。


     Scikit-learn依托于Numpy、Scipy等几种工具包,封装大量经典以及最新的机器学习模型。该接口最早由David Cournapeau在2007年Google夏季代码节中提出并启动。后来作为Matthieu Brucher博士工作的一部分得以延续和完善。现在已经是相对成熟的机器学习开源项目。近十年来,有超过20位计算机专家参与其代码的更新和维护工作。作为一款用于机器学习和实践的Python第只方开源程序库,Scikit-learn因其出色的接口设计和高效的学习能力,尤其受ML爱好者的欢迎。


    和其他众多的开源项目一样,Scikit-learn目前主要由社区成员自发进行维护。可能是由于维护成本的限制,Scikit-learn相比其他项目要显得更为保守。这主要体现在两个方面:一是Scikit-learn从来不做除机器学习领域之外的其他扩展,二是Scikit-learn从来不采用未经广泛验证的算法。


Scikit-learn的基本功能主要被分为六大部分:

分类,回归,聚类,数据降维,模型选择和数据预处理。  


1、分类:是指识别给定对象的所属类别,属于监督学习的范畴,最常见的应用场景包括垃圾邮件检测和图像识别等。目前Scikit-learn已经实现的算法包括:支持向量机(SVM),最近邻,逻辑回归,随机森林,决策树以及多层感知器(MLP)神经网络等等。  需要指出的是,由于Scikit-learn本身不支持深度学习,也不支持GPU加速,因此这里对于MLP的实现并不适合于处理大规模问题。有相关需求的读者可以查看同样对Python有良好支持的Keras和Theano等框架。  

2、回归:是指预测与给定对象相关联的连续值属性,最常见的应用场景包括预测药物反应和预测股票价格等。目前Scikit-learn已经实现的算法包括:支持向量回归(SVR),脊回归,Lasso回归,弹性网络(Elastic Net),最小角回归(LARS ),贝叶斯回归,以及各种不同的鲁棒回归算法等。可以看到,这里实现的回归算法几乎涵盖了所有开发者的需求范围,而且更重要的是,Scikit-learn还针对每种算法都提供了简单明了的用例参考。  

3、聚类:是指自动识别具有相似属性的给定对象,并将其分组为集合,属于无监督学习的范畴,最常见的应用场景包括顾客细分和试验结果分组。目前Scikit-learn已经实现的算法包括:K-均值聚类,谱聚类,均值偏移,分层聚类,DBSCAN聚类等。  

4、数据降维:是指使用主成分分析(PCA)、非负矩阵分解(NMF)或特征选择等降维技术来减少要考虑的随机变量的个数,其主要应用场景包括可视化处理和效率提升。  

5、模型选择

是指对于给定参数和模型的比较、验证和选择,其主要目的是通过参数调整来提升精度。目前Scikit-learn实现的模块包括:格点搜索,交叉验证和各种针对预测误差评估的度量函数。  

6、数据预处理:是指数据的特征提取和归一化,是机器学习过程中的第一个也是最重要的一个环节。这里归一化是指将输入数据转换为具有零均值和单位权方差的新变量,但因为大多数时候都做不到精确等于零,因此会设置一个可接受的范围,一般都要求落在0-1之间。而特征提取是指将文本或图像数据转换为可用于机器学习的数字变量。  需要特别注意的是,这里的特征提取与上文在数据降维中提到的特征选择非常不同。特征选择是指通过去除不变、协变或其他统计上不重要的特征量来改进机器学习的一种方法。  总结来说,Scikit-learn实现了一整套用于数据降维,模型选择,特征提取和归一化的完整算法/模块,虽然缺少按步骤操作的参考教程,但Scikit-learn针对每个算法和模块都提供了丰富的参考样例和详细的说明文档。


scikit-learn的安装


pip install -U scikit-learn

image.png


成功安装,哈哈!


scikit-learn的使用方法

scikit-learn algorithm cheat-sheet

选择正确的估计量:解决机器学习问题的最困难的部分通常是为工作找到正确的估计量。不同的估计量更适合于不同类型的数据和不同的问题。下面的流程图旨在为用户提供一个关于如何处理问题的粗略指南,这些问题涉及到哪些评估人员要尝试您的数据。点击下表中的任何估算器查看其文档。

地址:https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

image.png



image.png


相关文章
|
7月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
256 14
|
7月前
|
机器学习/深度学习 算法 Python
请解释Python中的随机森林算法以及如何使用Sklearn库实现它。
【2月更文挑战第28天】【2月更文挑战第101篇】请解释Python中的随机森林算法以及如何使用Sklearn库实现它。
72 3
|
7月前
|
机器学习/深度学习 存储 算法
sklearn应用线性回归算法
sklearn应用线性回归算法
94 0
|
7月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
7月前
|
机器学习/深度学习 算法 数据挖掘
请解释Python中的决策树算法以及如何使用Sklearn库实现它。
决策树是监督学习算法,常用于分类和回归问题。Python的Sklearn库提供了决策树实现。以下是一步步创建决策树模型的简要步骤:导入所需库,加载数据集(如鸢尾花数据集),划分数据集为训练集和测试集,创建`DecisionTreeClassifier`,训练模型,预测测试集结果,最后通过`accuracy_score`评估模型性能。示例代码展示了这一过程。
84 1
|
7月前
|
机器学习/深度学习 算法 数据可视化
请解释Python中的K-means聚类算法以及如何使用Sklearn库实现它。
【2月更文挑战第29天】【2月更文挑战第104篇】请解释Python中的K-means聚类算法以及如何使用Sklearn库实现它。
86 1
|
7月前
|
机器学习/深度学习 分布式计算 算法
大模型开发:你如何确定使用哪种机器学习算法?
在大型机器学习模型开发中,选择算法是关键。首先,明确问题类型(如回归、分类、聚类等)。其次,考虑数据规模、特征数量和类型、分布和结构,以判断适合的算法。再者,评估性能要求(准确性、速度、可解释性)和资源限制(计算资源、内存)。同时,利用领域知识和正则化来选择模型。最后,通过实验验证和模型比较进行优化。此过程涉及迭代和业务需求的技术权衡。
128 2
|
7月前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据处理到算法优化
【2月更文挑战第30天】 在数据驱动的时代,构建一个高效的机器学习模型是实现智能决策和预测的关键。本文将深入探讨如何通过有效的数据处理策略、合理的特征工程、选择适宜的学习算法以及进行细致的参数调优来提升模型性能。我们将剖析标准化与归一化的差异,探索主成分分析(PCA)的降维魔力,讨论支持向量机(SVM)和随机森林等算法的适用场景,并最终通过网格搜索(GridSearchCV)来实现参数的最优化。本文旨在为读者提供一条清晰的路径,以应对机器学习项目中的挑战,从而在实际应用中取得更精准的预测结果和更强的泛化能力。
|
7月前
|
机器学习/深度学习 自然语言处理 算法
【机器学习】包裹式特征选择之拉斯维加斯包装器(LVW)算法
【机器学习】包裹式特征选择之拉斯维加斯包装器(LVW)算法
284 0
|
7月前
|
机器学习/深度学习 存储 算法
【机器学习】包裹式特征选择之基于遗传算法的特征选择
【机器学习】包裹式特征选择之基于遗传算法的特征选择
345 0