DL框架之Keras:深度学习框架Keras框架的简介、安装(Python库)、相关概念、Keras模型使用、使用方法之详细攻略(二)

简介: DL框架之Keras:深度学习框架Keras框架的简介、安装(Python库)、相关概念、Keras模型使用、使用方法之详细攻略

Keras的安装


pip install Keras

python -m pip install keras


image.png


哈哈,大功告成!继续学习去啦!

pip install --upgrade Kera


image.png


190827更新到2.2.5


image.png


190827再次还原到2.2.4

image.png



相关文章

Py之keras-resnet:keras-resnet的简介、安装、使用方法之详细攻略



Keras的使用方法


0、三种API方式:The Sequential Model (序列模型)、The functional API (函数式API)、Model subclassing(模型子类化)


from keras.models import Model

from keras.callbacks import ModelCheckpoint

from keras.layers import Conv2D, MaxPool2D, Flatten, Dropout, Dense, Input

from keras.optimizers import Adam

from keras.backend.tensorflow_backend import set_session

from keras.utils.vis_utils import model_to_dot

import tensorflow as tf

from keras.backend.tensorflow_backend import set_session

np.random.seed(5)

config = tf.ConfigProto()

config.gpu_options.allow_growth=True

set_session(tf.Session(config=config))


1、The Sequential Model 序列模型


-非常简单

-仅适用于单输入,单输出,顺序的层堆叠

-适用于70%以上的用例


Sequential 序列模型如所示

可以简单地使用.add() 来堆叠模型

在完成了模型的构建后, 可以使用.compile() 来配置学习过程:

如果需要,还可以进一步地配置优化器:

批量地在训练数据上进行迭代: # x_train 和y_train 是Numpy 数组--就像在Scikit-Learn API 中一样


或者,可以手动地将批次的数据提供给模型:


一行代码就能评估模型性能:

对新的数据生成预测

1、快速开始序贯(Sequential)模型  

序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”。  

(1)、可以通过向Sequential模型传递一个layer的list来构造该模型:  

from keras.models import Sequential

from keras.layers import Dense, Activation  

model = Sequential([ Dense(32, units=784), Activation('relu'), Dense(10), Activation('softmax'), ])

(2)、也可以通过.add()方法一个个的将layer加入模型中:  

model = Sequential() model.add(Dense(32, input_shape=(784,)))

model.add(Activation('relu'))


#引入Sequential,Dense,Activation

from keras.models import Sequential

from keras.layers import Dense, Activation

#向layer添加list方式

model = Sequential([Dense(32, input_dim=784),Activation('relu'),Dense(10),Activation('softmax'),])

#通过.add()方式

model = Sequential()

model.add(Dense(32, input_dim=784))

model.add(Activation('relu'))


2、The functional API 函数式API


-象玩乐高积木

-多输入,多输出,任意静态图拓扑

-适用于95%的用例


Keras 函数式API 是定义复杂模型(如多输出模型、有向无环图,或具有共享层的模型)的方法。


例一:全连接网络


3、Model subclassing 模型子类化


-最大的灵活性

-更大的可能错误面


(1)、通过对tf.keras.Model 进行子类化并定义你自己的前向传播来构建完全可自定义的模型。在__init__ 方法中创建层并将它们设置为类实例的属性。在call 方法中定义前向传播。

(2)、在启用Eager Execution 时,模型子类化特别有用,因为可以命令式地编写前向传播。

(3)、以下示例展示了使用自定义前向传播进行子类化的tf.keras.Model


class MyModel(tf.keras.Model):

   def __init__(self, num_classes=10):

       super(MyModel, self).__init__(name='my_model')

       self.num_classes = num_classes  

       # Define your layers here.

       self.dense_1 = layers.Dense(32, activation='relu')

       self.dense_2 = layers.Dense(num_classes, activation='sigmoid')

     

   def call(self, inputs):

       # Define your forward pass here,

       # using layers you previously defined (in `__init__`).

       x = self.dense_1(inputs)

       return self.dense_2(x)

   def compute_output_shape(self, input_shape):

       # You need to override this function if you want to use the subclassed model

       # as part of a functional-style model.# Otherwise, this method is optional.

       shape = tf.TensorShape(input_shape).as_list()

       shape[-1] = self.num_classes

       return tf.TensorShape(shape)

实例化新模型类

model = MyModel(num_classes=10) # The compile step specifies the training configuration.

model.compile(optimizer=tf.train.RMSPropOptimizer(0.001),

             loss='categorical_crossentropy',

             metrics=['accuracy'])

# Trains for 5 epochs.

model.fit(data, labels, batch_size=32, epochs=5)



相关文章
|
2月前
|
IDE 开发工具 索引
在Python中安装第三方库
在Python中安装第三方库
709 30
|
17天前
|
Linux Python
Linux 安装python3.7.6
本教程介绍在Linux系统上安装Python 3.7.6的步骤。首先使用`yum`安装依赖环境,包括zlib、openssl等开发库。接着通过`wget`下载Python 3.7.6源码包并解压。创建目标文件夹`/usr/local/python3`后,进入解压目录执行配置、编译和安装命令。最后设置软链接,使`python3`和`pip3`命令生效。
|
3天前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
2月前
|
存储 JSON 网络安全
使用 EFS 在 AWS Lambda 上安装 Python 依赖项
使用 aws lambda 时,开发人员面临的常见挑战之一是管理大型 python 依赖项。
34 1
|
2月前
|
Ubuntu Linux iOS开发
安装Python
安装 Python 是相对简单的过程,但需要根据不同的操作系统选择合适的方法。同时,合理使用虚拟环境可以更好地管理项目的依赖和环境,提高开发效率。希望这些步骤和注意事项能帮助你顺利安装 Python。
|
29天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
124 5
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
101 16
|
21天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
79 19
|
21天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
74 7
|
1月前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。