目录
ANN/DNN深度神经网络算法的简介
1、DNN VS 人类大脑
1、ANN的四个特性和三个优点
ANN/DNN深度神经网络算法的经典案例
ANN/DNN深度神经网络算法的简介
人工神经网络ANN(Artificial Neural Network)是由大量处理单元互联组成的非线性、自适应信息处理系统。它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
ANN的基本过程可以概述如下:外部刺激通过神经末梢,转化为电信号,传导到神经细胞(又叫神经元);无数神经元构成神经中枢;神经中枢综合各种信号,做出判断;人体根据神经中枢的指令,对外部刺激做出反应。其过程表述如上图所示。
人工神经网络经历了漫长的发展阶段。最早是上个世纪六十年代提出的“人造神经元”模型,叫做“感知器”(perceptron)。感知机模型,是机器学习二分类问题中的一个非常简单的模型。它的基本结构如下图所示:
随着反向传播算法、最大池化(max-pooling)等技术的发明,神经网络进入了飞速发展的阶段。神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入。典型的人工神经网络具有以下三个部分:
结构(Architecture)结构指定了网络中的变量和它们的拓扑关系。
激励函数(Activity Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。
学习规则(Learning Rule)指定了网络中的权重如何随着时间推进而调整。
一个典型的人工神经网络结构如下图所示
1、DNN VS 人类大脑