本周关键词:新冠病毒、美国大选、ImageNet
AI新闻
AI通过咳嗽声检测无症状新冠病毒感染
MIT的研究人员发现,无症状新冠病毒感染者的咳嗽方式可能与正常人不同。这些差异是人耳无法理解的。但事实证明,它们可以被人工智能发现。
详情:
https://news.mit.edu/2020/covid-19-cough-cellphone-detection-1029
美国大选中,AI与民调机构的预测表现如何?
民调和AI预测美国2020年总统大选失实。实践再次告诉我们,仔细取样是可靠预测的关键。
ImageNet预训练出的算法充满偏见
一组研究人员声称,他们能够证实,在ImageNet上训练的计算机视觉算法中普遍存在偏见。
从脑电波中诊断抑郁症
Alphabet的X实验室开发了配套的硬件和软件,试图从脑电波读数中诊断抑郁症和焦虑情绪。
AI学术
神经网络的表现与宽度和深度的关系
深度神经网络体系结构通常通过调整其宽度和深度来适应可用的计算资源。在这项工作中,研究人员研究了宽度和深度对神经网络表示的影响。
通过在CIFAR-10、CIFAR-100和ImageNet上的实验,他们证明随着宽度和深度相对于数据集大小的增加,对于隐藏表示的分析显示了一种特征块结构的出现,该结构反映了第一主成分的相似性,并会传播到许多网络隐藏层。
进一步的分析发现,虽然块结构对于每个模型都是唯一的,但是其他学习到的特征在不同的初始化和体系结构中是共享,特别是在网络的相对深度上。当然,关于如何通过训练产生块结构,以及如何利用对网络深度和宽度的见解来优化的模型设计,仍然存在一些有趣的开放性问题。
通过离线强化学习联系新技能和先验知识
强化学习已应用于各种各样的机器人问题,但大多数此类应用都涉及从零开始为每个新任务收集数据。因此,这一领域的研究一直受到时间和成本的限制,机器人学习到的行为通常也很窄——策略只能在训练它的少数场景中执行任务。但如果有一种方法可以合并大量之前的数据(无论是来自先前解决的任务,还是来自无监督或无方向的环境交互)来扩展和概括学习到的行为呢?
研究人员表明,通过动态规划,他们可以重用先前的数据来扩展新的技能。即使先前的数据实际上不能成功地解决新任务,它仍然可以用于学习一个更好的策略,方法是为代理提供对其环境机制的更广泛的理解。
实验结果证明了该方法的有效性,该方法将先前数据集中的几种行为链接起来,以解决一个新任务,其中最困难的实验设置包括连续组合四种机器人技能:拾取、放置、打开抽屉和抓取。
Demo网站:
https://sites.google.com/view/cog-rl?utm_campaign=AI%20Scholar%20Weekly%20&utm_medium=email&utm_source=Revue%20newsletter
原文:
https://arxiv.org/abs/2010.14500v1?utm_campaign=AI%20Scholar%20Weekly%20&utm_medium=email&utm_source=Revue%20newsletter