指数增长、拐点,斯坦福学霸自制动画,用最简单的方式解释疫情常见词

简介: 指数增长、拐点,斯坦福学霸自制动画,用最简单的方式解释疫情常见词

大家对指数增长应该都有所耳闻,但是单凭的人们的直觉,又很难意识到这究竟发生了什么。

上图就是一个典型的指数增长,体现的是COVID-2019中国确诊病例数每天的变化。那么为什么传染病的传染会是典型的指数增长呢?指数增长的本质又是什么?

YouTube上有着231万订阅的数据可视化神级专栏“3Blue1Brown”最近发布了一个视频,通过对COVID-2019中国确诊病例数据的可视化,为大家讲解了指数增长在这次疫情传播中的体现,从中,我们既能看到指数增长的本质,还能知道,指数增长是怎么结束的。8:56

视频链接:https://www.youtube.com/watch?v=Kas0tIxDvrg

什么是指数增长?

指数增长通常意味着数据随着时间的变化,后一个数据等于前一个数据乘以一个系数。体现在这次疫情的数据中,便是后一天的确诊病例数是前一天的1.15-1.25倍。

病毒的传播就是一个典型指数增长的例子,假设某天的病例数是N(d),平均每天接触的人为E,每个暴露者被感染的概率为p,那么每天新增的病例数量为N(d)*E*p,也就是说,N(d+1)=(1+E*p)*N(d)。这个(1+E*p)就是那个1.15-1.25的常数。

如果把Y轴以对数为刻度,那么结果会更加直观,在这种情况下,增长情况就可以拟合成一条直线,这条直线的斜率告诉我们,病例数大概每16天翻十倍

那么这是一个什么概念呢?举个例子,某一天我们看到韩国有6000+病例,而美国有60例,直观上我们会认为韩国的疫情比美国要严重100倍,但事实上,美国只是比韩国晚了一个月

指数增长会永无止境吗?

如果单从理论上来说,指数增长似乎会一直持续下去,但是对传染病而言,却不会如此,它肯定会在某个时间变慢,关键是这个时刻会在什么时候来临。

是像2003年的SARS一样,到了8000多就停止了,还是像1918年的西班牙大流感一样,会感染全部人口的27%?

这个问题显然不能单纯的用画线来解决。

从N(d)=(1+E*p)*N(d-1)这个公式来看,我们可以得出:

这么看来,让N(d)变小的方法方法,就是减小E和p,而这是必然会发生的,首先,因为即使人们不采取任何措施,人群中剩下的未被感染的人数也在逐渐变少,那么N(d)的增长会不可避免的趋向于0,直到所有人都被感染。

考虑到这个情况,新的曲线就会是这么个情况——一条对数曲线。刚开始的时候与指数曲线相差不大,随着时间的推移,曲线的切线斜率会逐渐变小,直到趋于0,而曲线斜率开始变小时,就是我们所说的拐点。

人类如何阻止“指数增长”?

大众一直比较关注的“增长因子”,即当天新增病例数与前一天的比值。那么如果第五天的“增长因子”为1.15,那么第五天增长的人数则是4059,而当“增长因子”为1时,这个数字为3530,看起来区别不大,但却标示着拐点已经悄然来临。

实际上,人们也不是平均分布在世界上,而是生活在社区中,但是如果在社区之间加入一定的人口流动,情况仍然很糟糕,这就是为什么我们需要隔离。

所幸的是,人类并不一定只能等待大部分人都被感染,我们可以通过减少出行,勤洗手等措施减少E和p,并且千万不要小瞧这些措施的影响,因为指数增长对常数极其敏感。假设这个常数是1.15,那么61天之后,总的感染人数会达到1亿,而将常数减少到1.05,那么61天后被感染的人数只有40万

所以我们现在采取的每一个措施——隔离、戴口罩、勤洗手,都在尽全力减少这个常数,正如作者所说,“如果所有人都在担心,那反而没有什么可担心的;而如果所有人都不担心,那才是需要担心的。

致力于用可视化让问题变得简单的3blue1brown

3blue1brown的作者名叫Grant Sanderson,他介绍自己的这个专栏为“数学与娱乐的结合”,目标是用动画来驱动解释,通过新的视角来让困难的问题变得简单。

显然,拥有230万订阅者的3blue1brown不可能光靠Grant Sanderson一个人来打理了,从每个动画的最后我们也可以看到,有专业的可视化和动画团队在支持这个工作。

从2015年3月注册以来,3blue1brown就致力于用各种丰富的可视化内容来向大众普及冰冷的科学知识,内容也是包罗万象,从数学、物理到计算机,一些专题甚至出了连载。

Grant Sanderson2015年毕业于斯坦福大学,学的专业就是数学,但是他也坦言,在斯坦福学习数学的道路上,他一直受计算机这个“情人”的诱惑,虽然最终还是坚持学完了数学,但还是对牺牲了“情人”计算机痛惜不已。

相关文章
|
编解码 人工智能 物联网
离FaceChain应用生态爆发还有多远?-0905迭代周记
在过去的不到一个月,FaceChain开源项目从无到有,成功突破了相关技术瓶颈,GitHub(https://github.com/modelscope/facechain)获得了超过4.6K star,为未来的应用发展奠定了坚实的基础。
离FaceChain应用生态爆发还有多远?-0905迭代周记
|
3月前
|
算法 C++
惊爆!KPM算法背后的秘密武器:一行代码揭秘字符串最小周期的终极奥义,让你秒变编程界周期大师!
【8月更文挑战第4天】字符串最小周期问题旨在找出字符串中最短重复子串的长度。KPM(实为KMP,Knuth-Morris-Pratt)算法,虽主要用于字符串匹配,但其生成的前缀函数(next数组)也可用于求解最小周期。核心思想是构建LPS数组,记录模式串中每个位置的最长相等前后缀长度。对于长度为n的字符串S,其最小周期T可通过公式ans = n - LPS[n-1]求得。通过分析周期字符串的特性,可证明该方法的有效性。提供的C++示例代码展示了如何计算给定字符串的最小周期,体现了KPM算法在解决此类问题上的高效性。
81 0
|
5月前
|
存储 人工智能 C++
【PTA】L1-064 估值一亿的AI核心代码(详C++)
【PTA】L1-064 估值一亿的AI核心代码(详C++)
37 1
|
5月前
|
SQL 数据可视化 算法
python实战分析解锁增长之谜:瀑布图揭示科技初创公司营收背后的真相
python实战分析解锁增长之谜:瀑布图揭示科技初创公司营收背后的真相
|
数据采集 SQL 算法
阿里音乐流行趋势预测—亚军答辩(一)|学习笔记
快速学习阿里音乐流行趋势预测—亚军答辩(一)
423 0
|
决策智能 计算机视觉
博弈论第十二集总结(“社会公约、侵略和周期 ”观后感)
博弈论第十二集总结(“社会公约、侵略和周期 ”观后感)
92 0
|
决策智能
博弈论第十一集总结(进化稳定—合作,突变,与平衡 “ 观后感)
博弈论第十一集总结(进化稳定—合作,突变,与平衡 “ 观后感)
73 0
|
数据挖掘 定位技术 Python
用对线阶段数据分析和预测《英雄联盟》的游戏结果
用对线阶段数据分析和预测《英雄联盟》的游戏结果
522 0
用对线阶段数据分析和预测《英雄联盟》的游戏结果
|
算法 大数据 开发者
阿里音乐流行趋势预测—亚军答辩(二)|学习笔记
快速学习阿里音乐流行趋势预测—亚军答辩(二)
252 0
|
人工智能 算法 图形学
单帧风景照变延时摄影,分分钟搞定,还能有昼夜变化,这是来自日本的开源动画景观算法
云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来! 潮起浪涌,拍击礁石。 你以为这是慢动作录制的自然片段? 非也。 只要一张静态风景照,几分钟之内,AI就能还原出这自然界的壮阔动态。
单帧风景照变延时摄影,分分钟搞定,还能有昼夜变化,这是来自日本的开源动画景观算法