一周AI最火论文 | 点点手指变换UI设计风格,斯坦福发布基于计算机视觉的UI设计工具

简介: 一周AI最火论文 | 点点手指变换UI设计风格,斯坦福发布基于计算机视觉的UI设计工具

本周最佳学术研究

基于神经样式转移的APP样式转换

斯坦福大学的研究人员介绍了ImageNet,使得终端用户和app开发人员可以通过样式转换的方法,使用他们选择的图像来重新设置GUI的样式。样式转移是指从参考图像中提取样式并将其应用于输入图像,是一项计算机视觉任务。

与传统的图像转换(如模糊、锐化和颜色转换)相比,该技术使用了了可以生成更丰富、更美丽且更多样化结果的结构。研究人员向50位评估者展示了使用ImagineNet和其他样式转换技术重新设计过的几种GUI,而所有人都偏好ImagineNet设计的样式。

与以前在内容中添加处理步骤以保留细节的做法不同,ImageNet从样式中复制了更多信息。该方法使终端用户可以使用他们选择的艺术品来重新设计app界面的样式,从而有效地使著名艺术家的技能变得触手可及。具体来说,ImagineNet可用于重新设计:

  • App的图形资产
  • 包含用户提供内容的app
  • 包含动态生成GUI的app

这个方法是未来技术发展的起点。即便是与当今最前沿的技术相比,我们也可以期待在未来看到更精美的app设计。

原文:

https://arxiv.org/abs/2001.04932v1

基于深度3D网络的按需实体纹理合成

在本文中,研究人员介绍了实体纹理合成的最新技术,然后介绍了使用卷积神经网络(CNN)进行2D纹理合成的一些成功应用。本文介绍的方法是采用CNN生成器按需合成实体纹理的首个方法。

按需生成实体纹理所需的部分对于稳定的纹理合成至关重要,因为对于大多数应用领域而言,以有用的分辨率存储整个实体纹理的价格是非常昂贵的。

该方法建立在先前基于示例合成2D纹理的CNN方法的基础上,提供了仅生成实体纹理所需部分的功能。研究人员还提到了相关的使用2D视图生成3D对象的CNN方法。

该方法可以得到一个简单轻便的网络,可以在生成体积的横截面沿着一到三个方向重现示例的视觉特征。

纹理合成可以用于填充图像中的空隙(例如修复),扩展小图片和生成巨大且不重复的背景图像。

本文提出的方法是有关的常规按需技术的必要改进。它仅生成必要的实体组件,因此有助于加速纹理化表面并节省内存。它很好地解决了基于补丁的2D和实体纹理方法遗留的问题。

该方法证实了合成逼真纹理的能力,也是向实现3D计算机图形、图像编辑、电影后期制作等领域的稳健应用迈进的重要一步。

原文:

https://arxiv.org/abs/2001.04528v1

GoogleResearch:回顾2019,展望2020和更远的未来

GoogleResearch专注于解决对人们的日常生活有极大帮助的问题。他们在最近发布的一篇文章中公布了2019年所做的所有研究工作。

他们在各种基础研究领域取得了进展、开源了各种代码并与各种团队继续合作来构建对终端用户更有用的工具和服务。

例如,在发展开发人员和AI研究社区方面,他们推出了TensorFlow 2.0,使ML系统和应用变得更加容易。他们还增加了对移动GPU推断的支持,推出了Teachable Machine 2.0(无需编码即可训练ML模型的工具)等。

在数据集领域,他们启动了多个数据集,来帮助ML社区探索不同的研究领域并负责任地共享开放数据。

大致来讲,你会在本文中找到一个令人兴奋的摘要(你肯定不想错过),其中列出了2019年完成的研究的全部清单,涉及包括AI伦理学、AI 造福社会、AI挑战、辅助技术、量子计算、通用算法和理论、AutoML、自然语言理解和机器人技术等在内的很多领域。

对于Google Research以及更广泛的研究社区而言,这是令人振奋的一年。就像Google Research一样,整个机器学习社区应该为我们在2019年的成就和2020年面临的挑战而感到兴奋。

原文:

https://ai.googleblog.com/2020/01/google-research-looking-back-at-2019.html

轻量级光流卷积神经网络

FlowNet和FlowNet2是实现光流估计的一些最新的CNN方法。但是要实现准确的流量估算,FlowNet2需要超过1.6亿个参数,并且运行速度很慢。

为了应对这一挑战,基于FlowNet2,研究人员现在开发了一种轻量且有效的卷积网络版本,他们将其称为LiteFlowNet2。新方法通过采用数据保真和基于变分的正则化,解决了经典的光流估计问题。

相较于FlowNet2,新方法在Sintel和KITTI基准测试上都表现更好,模型尺寸小了25.3倍,运行速度快了3.1倍。LiteFlowNet2也在常规方法的基础上,起到了类似于变型方法中数据保真和正则化的作用。

任何机器学习模型的目标都是在使用最少资源的同时获得准确的结果。

与传统技术相比,LiteFlowNet2具有轻量,准确和快速的流量计算功能,因此可以部署在诸如视频处理,视觉里程计,运动分割,动作识别,运动估计,SLAM,3D重建等应用中。

网络协议与训练模型:

https://github.com/twhui/LiteFlowNet2

原文:

https://arxiv.org/abs/1903.07414v2

如果机器人拥有计算机视觉魔法

计算机视觉处于快车道,而机器人技术处于慢车道。那么,机器人专家如何才能进入他们从事计算机视觉同事的快车道?

计算机视觉和机器人技术研究社区都始于相似的起点,但如今在会议和期刊,研究方法和研究速度方面存在很大的分歧。计算机视觉是基于评估而不是实验的,在过去的一年中研究人员渐渐意识到了对真实机器人进行评估的重要性,但与此同时也涉及许多挑战。

在这项工作中,研究人员提出了许多大胆的断言,他们认为应该在研究界内进行辩论,以提高我们机器人技术的集体创新速度。总结如下:

  • 标准数据集+竞争(评估指标+竞争者+竞争)+快速传播→快速进步
  • 没有竞争的数据集对进度的影响收效甚微
  • 为推动进步,研究人员应将他们的思维方式从实验转变为评估
  • 仿真是我们重复评估机器人性能的唯一方法
  • 研究人员可以使用新的 和新的指标来推动研究社区的发展

为了增加真实机器人对视觉研究社区的访问能力,他们提出并开发了BenchBot系统。BenchBot是一个在线门户,它使世界各地的研究人员都可以在真实、公平和平等的环境中,远程对各种类型的真实机器人进行机器学习和计算机视觉系统测试。

通过使研究人员访问原本可能无法访问的真实机器人,BenchBot的目标是使机器人民主化。它大大降低了研究需求门槛,无需拥有机器人、操作空间、操作人员或者精通ROS。

该代码已经开源,世界各地的其他研究实验室都可以复制BenchBot的设置,甚至可以建立更多在线门户,容纳更多研究人员在真实的机器人硬件上远程测试其算法。BenchBot的最终目标是允许在真实机器人上测试各种算法,成为机器人研究的标准化测试。

原文:

https://arxiv.org/abs/2001.02366v1

其他爆款论文

首届语音识别系统错误纠正公开挑战赛开幕,致力于提高自动语音识别系统的性能:

https://arxiv.org/abs/2001.03041v1

评估数据集移位下的预测不确定性。本文提出了关于现有分类问题最新方法的大规模基准,并评估了数据集偏移对准确性和校准的影响:

https://arxiv.org/abs/1906.02530

理论进,理论出:社会理论如何解决机器学习无法解决的问题。本文旨在指导计算机和社会科学家解决将机器学习工具应用于社会数据所涉及的问题:

https://arxiv.org/abs/2001.03203v2

代理可以类比学习吗?与基于最新模型算法的可推断模型相比,PAC强化学习的计算效率更高:

https://arxiv.org/abs/1912.10329v1

第一次尝试使用预训练的深度学习模型来增强针对迁移学习的后门攻击:

https://arxiv.org/abs/2001.03274v1

AI大事件

只有14.6%的公司在生产中部署了AI功能:

https://www.forbes.com/sites/gilpress/2020/01/13/ai-stats-news-only-146-of-firms-have-deployed-ai-capabilities-in-production/#7894fb7d2650

人工智能和人类软技能将成为2020年代的领导重点:

https://www.zdnet.com/article/ai-and-human-soft-skills-will-drive-leadership-priorities-in-2020s-linkedin-survey-finds/

披萨巨头达美乐正在利用英伟达GPU来加速和改善其AI驱动的应用程序:

https://blogs.nvidia.com/blog/2020/01/13/dominos-pizza-ai/


相关文章
|
6月前
|
机器学习/深度学习 编解码 资源调度
2024年3月的计算机视觉论文推荐
从去年开始,针对LLM的研究成为了大家关注的焦点。但是其实针对于计算机视觉的研究领域也在快速的发展。每周都有计算机视觉领域的创新研究,包括图像识别、视觉模型优化、生成对抗网络(gan)、图像分割、视频分析等。
132 0
|
6月前
|
机器学习/深度学习 自然语言处理 算法
2024年4月计算机视觉论文推荐
四月的计算机视觉研究涵盖多个子领域,包括扩散模型和视觉语言模型。在扩散模型中,Tango 2通过直接偏好优化改进了文本到音频生成,而Ctrl-Adapter提出了一种有效且通用的框架,用于在图像和视频扩散模型中添加多样控制。视觉语言模型的论文分析了CLIP模型在有限资源下的优化,并探讨了语言引导对低级视觉任务的鲁棒性。图像生成与编辑领域关注3D感知和高质量图像编辑,而视频理解与生成则涉及实时视频转游戏环境和文本引导的剪贴画动画。
141 0
|
2月前
|
人工智能 开发者
Nature曝惊人内幕:论文被天价卖出喂AI!出版商狂赚上亿,作者0收入
【9月更文挑战第8天】《自然》杂志近日揭露,学术出版商如泰勒·弗朗西斯与微软签订千万美元合约,及威利获高额报酬,将论文提供给科技巨头训练AI模型,引发学界对版权与收益分配的热议。此现象反映了AI对高质量数据的渴求,但亦使研究人员担忧成果被无偿商用,且可能影响学术独立性。尽管AI训练使用学术资源能提升模型科学性,助力科研进展,但如何保障作者权益及维持学术纯粹性仍是亟待解决的问题。https://www.nature.com/articles/d41586-024-02599-9
49 4
|
3月前
|
开发者 图形学 前端开发
绝招放送:彻底解锁Unity UI系统奥秘,五大步骤教你如何缔造令人惊叹的沉浸式游戏体验,从Canvas到动画,一步一个脚印走向大师级UI设计
【8月更文挑战第31天】随着游戏开发技术的进步,UI成为提升游戏体验的关键。本文探讨如何利用Unity的UI系统创建美观且功能丰富的界面,包括Canvas、UI元素及Event System的使用,并通过具体示例代码展示按钮点击事件及淡入淡出动画的实现过程,助力开发者打造沉浸式的游戏体验。
92 0
|
5月前
|
编解码 机器人 测试技术
2024年6月计算机视觉论文推荐:扩散模型、视觉语言模型、视频生成等
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。
135 8
|
6月前
|
编解码 边缘计算 自然语言处理
2024年5月计算机视觉论文推荐:包括扩散模型、视觉语言模型、图像编辑和生成、视频处理和生成以及图像识别等各个主题
五月发布的计算机视觉领域重要论文涵盖了扩散模型、视觉语言模型、图像生成与编辑及目标检测。亮点包括:1) Dual3D提出双模式推理策略,实现高效文本到3D图像生成;2) CAT3D利用多视图扩散模型创建3D场景,仅需少量图像;3) Hunyuan-DiT是多分辨率的中文理解扩散Transformer,可用于多模态对话和图像生成;4) 通过潜在扩散模型从EEG数据重建自然主义音乐,展示复杂音频重建潜力。此外,还有关于视觉语言模型和图像编辑的创新工作,如BlobGEN用于合成具有控制性的图像。
233 3
|
6月前
|
机器学习/深度学习 人工智能 数据挖掘
ICLR 49.9%论文疑有AI审稿
【5月更文挑战第20天】ICLR会议上一篇研究引发关注,推测近50%的论文可能由AI进行审稿,挑战传统审稿流程。研究者运用机器学习分析历史审稿数据,发现可能的AI审稿模式。该研究提出AI审稿可减轻审稿人负担,提高效率,但也面临证据不足、理解复杂学术概念限制及审稿行为多样性等问题。学术界需谨慎评估AI在审稿中的角色,以确保质量和公正性。[论文链接](https://arxiv.org/abs/2405.02150)
95 1
|
6月前
|
人工智能
AI大咖说-如何评价论文的创新性
《AI大咖说》探讨论文创新性,强调新意、有效性和领域研究问题的重要性。创新点在于用新颖方法有效解决研究问题。评价公式:价值=问题大小*有效性*新意度。该观点源于《跟李沐学AI》视频,提供1-100分评分标准,助力评估论文价值。5月更文挑战第14天
88 3
|
6月前
|
机器学习/深度学习 人工智能
论文介绍:AI击败最先进全球洪水预警系统,提前7天预测河流洪水
【5月更文挑战第4天】研究人员开发的AI模型(基于LSTM网络)成功击败全球最先进的洪水预警系统,能在未设测站流域提前7天预测洪水,显著提升预警时间,降低灾害影响。该模型使用公开数据集,减少了对长期观测数据的依赖,降低了预警系统的成本,有望帮助资源有限的地区。然而,模型的性能可能受特定流域条件影响,泛化能力和预测解释性仍有待改进。[论文链接](https://www.nature.com/articles/s41586-024-07145-1)
148 11
|
6月前
|
机器学习/深度学习 人工智能
ChatGPT检测器——以前所未有的准确性捕捉AI生成的论文
【2月更文挑战第25天】ChatGPT检测器——以前所未有的准确性捕捉AI生成的论文
95 7
ChatGPT检测器——以前所未有的准确性捕捉AI生成的论文

热门文章

最新文章