黑盒优化数据榜单RABBO?达摩院MindOpt优化求解器团队又出「开发者福利」啦

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: RABBO(Real-Aplication Black-Box Optimization benchmark)榜单提供具有实际应用背景的黑盒优化测试问题及评测方案,旨在帮助算法研发者打磨求解真实场景问题的黑盒优化算法,为算法使用者提供各类算法特点与适用场景分析以及使用参考。V1.0的题目集包含4种:经典题目集、金属冶炼配比优化、火星车路径规划、风场微观选址。是个研发优化技术的好素材,快来下载!

达摩院MindOpt优化求解器团队又出「开发者福利」啦,发布了黑盒优化的榜单RABBO,给广大开发者提供研发的素材。

RABBO的全称是Real-Aplication Black-Box Optimization benchmark。榜单会提供具有实际应用背景的黑盒优化测试问题及评测方案,旨在帮助算法研发者打磨求解真实场景问题的黑盒优化算法,为算法使用者提供各类算法特点与适用场景分析以及使用参考。

那,黑盒优化是什么意思呢?
今年MindOpt团队在发布的优化求解器产品中介绍了黑盒优化算法——“通过获取不同控制参数(输入变量)对应的系统表现,来推断和搜寻优化解"、“可用于强化学习策略搜索、工业冶炼方案设计、计算资源额度预算优化等”。
这个优化技术所求解的「黑盒优化问题」,泛指目标函数难以从数学上解析表达,缺少可直接利用的梯度信息,仅可利用目标函数输入和对应输出函数值进行最优解搜索的优化问题。

啊,太抽象了。
那,这技术能怎么用,如何去学习和研发自己的黑盒优化算法呢?
RABBO提供了针对黑盒优化问题的数学建模和优化求解的思路,提供了黑盒优化接口规范代码、有实际应用背景的测试问题、和效果评测的方案,帮助广大研发者快速学习和研发。
当前榜单1.0已经上线了4个题目集,可以直接git clone下载啦!!竞技的线上评测平台也即将上线!

RABBO V1.0的题目集包含4种问题,看起来挺有意思的:
20211020003444.jpg

  1. 经典题目集,synthetic。根据一些经典的数学函数来构造的测试问题,便于理解和学习。
  2. 金属冶炼配比优化,smelting。在工业炼钢生产工艺中,如何在钢水中投入合适的原料,使得满足下一工序的需求,又能降低成本?
  3. 火星车路径规划,rover。在环境未知的火星,如何根据当前的位置姿态、环境感知结果来进行路径规划,安全到达目标点?
  4. 风场微观选址,windfarm。风力发电场的发电收益会受风机尾流效应影响,如何设计每台机组的位置,最大化利用风能?

榜单地址:https://tianchi.aliyun.com/specials/promotion/BlackBox
数据下载方式:git clone git@code.aliyun.com:mindopt001/RABBO.git
线上评测平台:即将上线。

快来下载学习,加入黑盒优化技术的研发队伍吧~~

目录
相关文章
|
3月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
40 1
|
5月前
|
达摩院 供应链 安全
光储荷经济性调度问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文介绍使用MindOpt工具优化光储荷经济性调度的数学规划问题。光储荷经济性调度技术旨在最大化能源利用率和经济效益,应用场景包括分布式光伏微网、家庭能源管理系统、商业及工业用电、电力市场参与者等。文章详细阐述了如何通过数学规划方法解决虚拟电厂中的不确定性与多目标优化难题,并借助MindOpt云建模平台、MindOpt APL建模语言及MindOpt优化求解器实现问题建模与求解。最终案例展示了如何通过合理充放电策略减少37%的电费支出,实现经济与环保双重效益。读者可通过提供的链接获取完整源代码。
|
5月前
|
达摩院 BI 索引
切割问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文主要讲述了使用MindOpt工具对切割问题进行优化的过程与实践。切割问题是指从一维原材料(如木材、钢材等)中切割出特定长度的零件以满足不同需求,同时尽可能减少浪费的成本。文章通过实例详细介绍了如何使用MindOpt云上建模求解平台及其配套的MindOpt APL建模语言来解决此类问题,包括数学建模、代码实现、求解过程及结果分析等内容。此外,还讨论了一维切割问题的应用场景,并对其进行了扩展,探讨了更复杂的二维和三维切割问题。通过本文的学习,读者能够掌握利用MindOpt工具解决实际切割问题的方法和技术。
|
5月前
|
达摩院 算法 安全
智慧楼宇多目标调度问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文探讨了使用MindOpt工具优化智慧楼宇的多目标调度问题,特别是在虚拟电厂场景下的应用。智慧楼宇通过智能化技术综合考虑能耗、舒适度等多目标,实现楼宇设备的有效管理和调度。虚拟电厂作为多能源聚合体,能够参与电力市场,提供调峰、调频等辅助服务。文章介绍了如何使用MindOpt云上建模求解平台及MindOpt APL建模语言对楼宇多目标调度问题进行数学建模和求解,旨在通过优化储能设备的充放电操作来最小化用电成本、碳排放成本和功率变化成本,从而实现经济、环保和电网稳定的综合目标。最终结果显示,在使用储能设备的情况下,相比不使用储能设备的情形,成本节约达到了约48%。
|
5月前
|
达摩院 供应链 JavaScript
网络流问题--仓储物流调度【数学规划的应用(含代码)】阿里达摩院MindOpt
本文通过使用MindOpt工具优化仓储物流调度问题,旨在提高物流效率并降低成本。首先,通过考虑供需匹配、运输时间与距离、车辆容量、仓库储存能力等因素构建案例场景。接着,利用数学规划方法,包括线性规划和网络流问题,来建立模型。在网络流问题中,通过定义节点(资源)和边(资源间的关系),确保流量守恒和容量限制条件下找到最优解。文中还详细介绍了MindOpt Studio云建模平台和MindOpt APL建模语言的应用,并通过实例展示了如何声明集合、参数、变量、目标函数及约束条件,并最终解析了求解结果。通过这些步骤,实现了在满足各仓库需求的同时最小化运输成本的目标。
|
6月前
|
人工智能 算法 调度
优化问题之如何选择合适的优化求解器
优化问题之如何选择合适的优化求解器
|
6月前
|
达摩院 安全 调度
网络流问题--交通调度【数学规划的应用(含代码)】阿里达摩院MindOpt
本文探讨了如何利用数学规划工具MindOpt解决交通调度问题。交通调度涉及网络流分析,考虑道路容量、车辆限制、路径选择等因素,以实现高效运行。通过建立数学模型,利用MindOpt云平台和建模语言MAPL,设定流量最大化目标并确保流量守恒,解决实际的调度问题。案例展示了如何分配车辆从起点到终点,同时满足道路容量约束。MindOpt Studio提供在线开发环境,支持模型构建和求解,帮助优化大规模交通调度。
|
6月前
|
调度 决策智能
优化问题之优化求解器有哪些主要的评估特性
优化问题之优化求解器有哪些主要的评估特性
|
6月前
|
达摩院
人员排班【数学规划的应用(含代码)】阿里达摩院MindOpt
本文介绍了使用阿里巴巴达摩院的MindOpt工具解决人员排班的数学规划问题。人员排班在多个行业中至关重要,如制造业、医疗、餐饮和零售等。问题涉及多种约束,包括工作需求、员工能力、工作时间限制、连续工作天数及公平性。通过MindOpt云建模平台和建模语言MindOpt APL,建立数学模型并编写代码来解决最小化总上班班次的问题。案例中展示了如何声明集合、参数、变量和约束,并给出了部分代码示例。最后,通过MindOpt求解器得到最优解,并将结果输出到CSV文件中。
|
6月前
|
存储 达摩院 供应链
排产排程问题【数学规划的应用(含代码)】阿里达摩院MindOpt
**文章摘要:** 本文探讨了使用阿里巴巴达摩院的MindOpt优化求解器解决制造业中的排产排程问题。排产排程涉及物料流动、工序安排、设备调度等多个方面,通常通过数学规划方法建模。MindOpt支持线性规划、整数规划等,能有效处理大规模数据。案例以香皂制造工厂为例,考虑了多种油脂的购买、存储和生产计划,以及价格变化和存储成本。问题通过数学建模转化为MindOpt APL代码,求解器自动寻找最优解,以最大化利润。文章还提供了代码解析,展示了解决方案的细节,包括目标函数(利润最大化)、约束条件(如生产效率、库存管理)以及结果分析。