带你读《创新之巅: 未来十年重构商业的六大战略性技术》第一章未来十年重构商业的 六大技术1.3AI 如何工作

简介: 带你读《创新之巅: 未来十年重构商业的六大战略性技术》第一章未来十年重构商业的 六大技术1.3

 

 

AI如何工作

 

要使用 AI,你并不一定非得了解它是如何工作的。但是这种洞察可以帮助你了解当前技术的能力和局限性。以下文字是针对非技术类型人员的理解而设计的,但是如果这段文字对于你来说还是太过遥远并让你陷于困惑,请跳到下一部分。

 

神经网络、训练和模型

 

神经网络支撑着今天大部分的人工智能。它们的运行与传统数字计算机迥然不同。传统计算机是性能叠加、锦上添花式机器,而神经网络的组织则更像是创建在我们大脑中的高度互联式结构。神经网络由互相连接的节点构成,它的行为与神经元类似。每个节点都具备一个数值。不像使用01工作的二进制计算机,神经网络的每个节点都具备一个取值范围,取值范围则取决于应用范围。节点又依照层次进行安排。第一层称为输入层,最后一层称为输出层,处于这之间的层称为隐藏层(如图 1.1所示)。

image.png



1.1一个简单的神经网络

 

通常来说,层次越多、每层节点越多,神经网络的能力就越强。具备很多层的神经网络被称为深度神经网络,这也是深度学习这个术语的由来。


隐藏层中的每个节点都既有输入也有输出。每个节点既与上一层的所有节点相连接,也与下一层的所有节点相连接。每个节点的值受其连接的上一层所有节点值的影响。棘手的一点是:一些节点对后续节点的值的影响较其他节点更强,它们的影响就要加权。因此,每个节点的值是前面节点值的加权和。这些权值在训练阶段确定,并共同构成所谓的模型。模型决定神经网络的函数:权值不同,函数不同。信息通过这个复杂的加权网络,从输入层传递到输出层。


神经网络通过被称为反向传播backpropagation,商业中亦称为backprop)的程序进行训练。反向传播如何工作的细节已经超出本书的范围。从更高层面来说,反向传播是一种计算量大的统计方法,将神经网络的期望输出与真正输出进行比较,然后调整网络中的权重以提升结果的准确性。当正确结果已经给定,得出正确结果的整个神经网络中的所有路径的权重都得以增强。如果结果是错误的,则得出错误结果的路径被弱化。随着时间的推移,以及接触的数据越来越多,模型也就变得越来越正确。神经网络就是这样学习输入和输出之间正确   的、复杂的关联关系。

 

案例:放射学AI

 

为了训练 AI读懂放射学图表并发现肿瘤,需要让它接触很多图表样例(输入),每张图表都要标识放射科医生的诊断肿瘤或非肿瘤(期望输出)。神经网络的输出是一张图片,图片上注明了患肿瘤的概率。每次神经网络都接触一张新的图片,将神经网络的输出与正确的结果进行比较。如果图片中存在肿瘤,结果应该接近于 100%。如果不存在肿瘤,结果就接近于 0。反向传播的使用就是为了调整网络的模型(节点间连接的权重),强化得到正确结果的连接的权重,反之,弱化得到错误结果的连接的权重。一旦经过足够多的数据训练,神经网络诊断的准确率会高得令人难以置信。更复杂的网络甚至可能有几个输出结果,例如出现肿瘤的概率、栓塞的概率、骨折的概率等。


如果这些很难理解,那也没关系。需要理解的关键在于,神经网络能够推导出从样例中如何执行任务,而无须领域专家提供外显式规则。


放射科医生要经过很多年的训练来读懂 X射线、计算机断层扫描(CT)、核磁共振成像(MRI)和正电子放射型计算机断层扫描(PET)等图片。从医学院毕业后,放射科医生还要经过额外的培训,通常包括四年的住院医生见习期。在那之后,有的放射科医生还要做其他额外的专业化培训。要读懂图片、发现肿瘤及其他疾病需要用到全部放射科相关技能、经验和训练。然而,这个任务却在神经网络所能完成的范围内。给出足够多的训练数据,一个 AI可以培养出类似人类放射科医生一样的诊断能力,而一个人要成为放射科医生的背后却是十年左右的密集型教育。训练神经网络本质上是在编纂知识合集,以及学习来自成百上千的放射科医生的几十年的专业经验。他们的经验和诊断洞察被采集在所生成的模型中。


一些放射科医生在阅读放射学图表时,已经使用 AI工具以提供第二种意。随着这些工具阅读常规图表的准确率超过人类放射科医生,放射科医生也就可以将其注意力集中在更复杂、更高价值和更以病人为中心的任务和程序上。放射学所取得的进步也预示着其他医学分科的未来。在未来十年中,机器学习将应用于更多其他的医疗诊断领域和病理学中。


当进行 AI训练时,要创建一个模型需要大量的计算性能,而在使用这个模型时所需要的计算性能就少得多。使用模型的过程也被称为推理。通常来说,训练发生在工作站或在云上,而推理则发生在设备上。大多数未来的计算机芯片将包括推理引擎,优化后的硅加速器运行 AI模型就相对更为容易。

 

模式识别

 

模式识别是很多 AI系统的核心能力,这也体现在我们刚探讨过的放射学案例中。模式识别存在于很多应用中,并且不同应用范畴各具风格。记住所有这些不同的方法并不重要。在此列举它们只是为了举例说明机器学习的一些重要能力。阅读的时候,思考一下,可以如何使用这样一种能力来解决你们组织中的一些商业问题。


(1)分类,AI可以将数据划分为相似的类型。比如,放射科 AI将图片划分为阳性和阴性两个类别。在一个制造业工厂中,可以使用类似的方法进行外观检验和质量检查,或在一个水果包装厂进行水果完好度和成熟度的识别。


(2)  聚类,营销专家利用聚类算法将消费者划分为一个个具有相似特购买习惯、收入层次以及需求或欲望的细分市场。推荐引擎使用的也是聚类。流媒体音乐服务平台 Spotify通过分析历史听歌数据向你推荐你可能喜欢的歌曲。聚类算法可以发现歌曲和听歌者之间的复杂关系。聚类算法可能了解到我喜欢歌曲 ABC,而你喜欢歌曲 BCD。它就可以得出结论,你可能会喜欢歌曲 A,而我可能喜欢歌曲D聚类有助于提供个性化体验。


(3)  回归分析,能够发现不同数据之间关系描述的模式。比如,回归分析可能观察到,如果事件A发生,大部分时间事件B会紧接着发生。它也可能发现更错综复杂的关系,例如如果数据点 A低于一定阈值,而且事件B和事件 C没有发生,那么事件 D发生的可能性高于 46%预测分析工具也被用于对未来进行预测。比如沃尔玛使用回归分析预测某些食物商品的销量如何受特定天气条件的影响。


(4)  序列标注,是一种用于语音识别、手写体识别以及手势识别的模式识别方法。序列标注可被用于将句子分解为词组和短语,并通过获取上下文的方式对它们做出标注。比如,序列标注判定哪个词是名词、动词和专有名词。词语置于一个内容更为丰富的上下文中才能得到最好的解释。序列标注算法通过检查其所处的上下文,对句子中的词语或者对手写体中的手写字母进行分类。


(5)  时间序列预测,可用于天气预报、股票市场预测和灾难预测。这些算法分析一系列的历史数据点,并且用它来预测某序列中接下来可能出现的数据点。


这些模式匹配算法利用复杂的数学来施展它们的魔法。你不需要理解模式匹配是如何工作的,甚至无须记得以上列出的全部技术。你所需要理解的是,AI促使计算机理解物理世界、做出预测并且发现隐藏在数据中的复杂关系。而这些任务是很多商业问题得以解决的根本。

 


相关文章
|
2天前
|
人工智能 达摩院 计算机视觉
SHMT:体验 AI 虚拟化妆!阿里巴巴达摩院推出自监督化妆转移技术
SHMT 是阿里达摩院与武汉理工等机构联合研发的自监督化妆转移技术,支持高效妆容迁移与动态对齐,适用于图像处理、虚拟试妆等多个领域。
31 9
SHMT:体验 AI 虚拟化妆!阿里巴巴达摩院推出自监督化妆转移技术
|
5天前
|
人工智能 Java 程序员
通义灵码AI编码助手和AI程序员背后的技术
通义灵码AI编码助手和AI程序员背后的技术,由通义实验室科学家黎槟华分享。内容涵盖三部分:1. 编码助手技术,包括构建优秀AI编码助手及代码生成补全;2. 相关的AI程序员技术,探讨AI程序员的优势、发展情况、评估方法及核心难点;3. 代码智能方向的展望,分析AI在软件开发中的角色转变,从辅助编程到成为开发主力,未来将由AI执行细节任务,开发者负责决策和审核,大幅提升开发效率。
62 12
|
7天前
|
人工智能 搜索推荐
AI视频技术的发展是否会影响原创内容的价值
AI视频技术的发展显著降低了视频制作的门槛与成本,自动完成剪辑、特效添加等繁琐工作,大大缩短创作时间。它提供个性化创意建议,帮助创作者突破传统思维,拓展创意边界。此外,AI技术使更多非专业人士也能参与视频创作,注入新活力与多样性,丰富了原创内容。总体而言,AI视频技术不仅提升了创作效率,还促进了视频内容的创新与多样化。
|
5天前
|
人工智能 运维 Linux
进化、重构、赴未来,龙蜥加速推进产业面向AI时代变革 | 2024龙蜥大会主论坛
在2024龙蜥大会中,本次分享的主题是关于英特尔公司与龙蜥社区的合作成果和未来计划。 1. 龙蜥操作系统开源社区取得的关键性的进展 2. 社区治理 3. Anolis 23:面向AI时代,IT基础设施全新底座 4. 面对机遇开源共创,服务用户聚力前行 5. 面向AI时代,龙蜥社区发布三大计划加速生态建设 6. 展望未来
|
4天前
|
机器学习/深度学习 人工智能 编译器
BladeDISC++:Dynamic Shape AI 编译器下的显存优化技术
本文介绍了阿里云 PAI 团队近期发布的 BladeDISC++项目,探讨在动态场景下如何优化深度学习训练任务的显存峰值,主要内容包括以下三个部分:Dynamic Shape 场景下显存优化的背景与挑战;BladeDISC++的创新解决方案;Llama2 模型的实验数据分析
|
4天前
|
存储 人工智能 边缘计算
AI时代下, 边缘云上的技术演进与场景创新
本文介绍了AI时代下边缘云的技术演进与场景创新。主要内容分为三部分:一是边缘云算力形态的多元化演进,强调阿里云边缘节点服务(ENS)在全球600多个节点的部署,提供低时延、本地化和小型化的价值;二是边缘AI推理的创新发展与实践,涵盖低时延、资源广分布、本地化及弹性需求等优势;三是云游戏在边缘承载的技术演进,探讨云游戏对边缘计算的依赖及其技术方案,如多开技术、云存储和网络架构优化,以提升用户体验并降低成本。文章展示了边缘云在未来智能化、实时化解决方案中的重要性。
|
5天前
|
人工智能 Cloud Native 安全
圆桌会议:聚焦AI时代机遇下操作系统产业的进化与重构 | 2024龙蜥大会主论坛
2024龙蜥大会主论坛聚焦AI时代的操作系统产业进化与重构。专家们围绕开源社区建设、商业化衍生、替代方案及AI应用等议题展开讨论。中国工程院陈纯院士强调开源社区的重要性,阿里云蒋江伟提出操作系统的兼容性和包容性,AMD潘晓明表示将加强国际合作,中兴通讯刘东则探讨了操作系统与AI的深度融合。会议一致认为,龙蜥操作系统应抓住AI发展机遇,构建安全可靠的生态体系,推动国产操作系统走向国际化。
|
4天前
|
人工智能 编解码 安全
全球AI新浪潮:智能媒体服务的技术创新与AIGC加速出海
本文介绍了智能媒体服务的国际化产品技术创新及AIGC驱动的内容出海技术实践。首先,探讨了媒体服务在视频应用中的升级引擎作用,分析了国际市场的差异与挑战,并提出模块化产品方案以满足不同需求。其次,重点介绍了AIGC技术如何推动媒体服务2.0智能化进化,涵盖多模态内容理解、智能生产制作、音视频处理等方面。最后,发布了阿里云智能媒体服务的国际产品矩阵,包括媒体打包、转码、实时处理和传输服务,支持多种广告规格和效果追踪分析,助力全球企业进行视频化创新。
|
6天前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
|
2天前
|
人工智能 算法 前端开发
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
OmAgent 是 Om AI 与浙江大学联合开源的多模态语言代理框架,支持多设备连接、高效模型集成,助力开发者快速构建复杂的多模态代理应用。
95 72
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备

热门文章

最新文章