基于阿里云的智能钻机-泥浆泵故障诊断

简介: 当前,企业所使用的机电设备正朝着大型化、自动化、智能化和集成化的方向发展,机电设备内部不同部分、不同组件之间相互关联,不同的机电设备之间的联系也十分紧密,这些设备在企业的生产与运行过程中构成一个有机整体。一旦机电设备的某个部分或者某个元件在运转过程中出现故障或者失效,将引发整个机电设备一系列的连锁反应,影响到整个机电系统的正常运行,对企业造成一定的经济损失,甚至导致重大人员伤亡事故,造成深远的社会危害。


1.   项目背景

当前,企业所使用的机电设备正朝着大型化、自动化、智能化和集成化的方向发展,机电设备内部不同部分、不同组件之间相互关联,不同的机电设备之间的联系也十分紧密,这些设备在企业的生产与运行过程中构成一个有机整体。一旦机电设备的某个部分或者某个元件在运转过程中出现故障或者失效,将引发整个机电设备一系列的连锁反应,影响到整个机电系统的正常运行,对企业造成一定的经济损失,甚至导致重大人员伤亡事故,造成深远的社会危害。

在当今信息化与网络化的大形势下,此项目可以对工业化与信息化的结合起到很好的示范作用,对于企业未来的发展有着重要的意义。钻机故障诊断平台可以可以实时远程在线监测设备运行状态并提供故障数据分析。此项目利用远程通信技术从设备现场采集的数据通过无线传输系统存储于云服务器,通过对数据的运算、分析,将最优的运行参数再反馈于设备从而达到设备的高效运行及设备运行的安全可靠。因此钻机故障诊断项目保证了企业设备的安全可靠,实现可持续发展,已成为行业内十分紧迫的任务。

2.   数据现状

 本项目采用传感器采集钻机振动信号,振动数据显示如图所示。

image.png

 用代码提取出所有的振动特征通道,方便之后使用。特征通道列表如下:

 

["AI0","AI1", "AI2","AI3", "AI4","AI5", "AI6","AI7", "AI8","AI9", "AI10","AI11", "AI12","AI13", "AI14","AI15", "AI16", "AI17","AI18", "AI19"]

 

3数据分布

对于特征数较多的数据集,采用subplot方式绘制各类图是更好的选择,本项目因为主要分析AI6AI8故障数据,故选取AI6AI8进行可视化展现,生成了多变量数据分布图,其中蓝色的是某特征训练集的数据分布情况,右上角是通道。根据分布图,可以判断各个通道的数据分布是否一致。

image.png

4特征工程

4.1 指标分析

时域特征指标主要分为含量纲指标和无量纲指标。通常含量纲指标有均值、方差、峭度、偏斜度、均方根、峰峰值、最大值、最小值,无量纲指标有波形指标、峰值指标、脉冲指标、裕度指标、偏斜度指标、峭度指标,选取钻机振动信号进行对比分析。

image.png

image.png

image.png

image.png

image.png

 

4.2特征提取

传统的振动信号分析和处理方法一般都是采用傅立叶分析,它是一个窗口函数固定不变的分析方法,无法反映信号的非平稳、持时短、时域和频域局部化等特性。而小波分析是一种窗口面积固定但其形状可改变,即时间和频率窗都可改变的时频局部化分析方法,由于它在分解的过程中只对低频信号再分解,对高频信号不再实施分解,使得它的频率分辨率随频率升高而降低。

在这种情况下,小波包分解应运而生,它不仅对低频部分进行分解,对高频部分也实施了分解,而且小波包分解能根据信号特性和分析要求自适应地选择相应频带与信号频谱相匹配,是一种比小波分解更为精细的分解方法。

下面以钻机振动信号为例对其进行小波包分解,钻机振动原始信号如图所示。


image.png

4.3 能量频带分析

对其采用db3小波进行3层小波包分解,提取小波包分解后频带能量,频带能量如图所示。

 

image.png

5故障预测建模

SVM的全称是Support Vector Machine,即支持向量机,主要用于解决模式识别领域中的数据分类问题,属于有监督学习算法的一种。SVM要解决的问题可以用一个经典的二分类问题加以描述,在模式识别领域称为线性可分问题,经过演进,现在也可以支持多元分类,同时经过扩展,也能应用于回归问题。

SVM学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。如下图所示,W·X+b=0即为分离超平面,对于线性可分的数据集来说,这样的超平面有无穷多个(即感知机),但是几何间隔最大的分离超平面却是唯一的。

image.png

将训练集数据导入SVM故障识别器进行训练,然后将测试集导入训练好的模型,经过多次测试及对比,获得了较高的准确度参数。

小结

通过对钻机故障演化机理的分析和研究,结合时域特征指标和小波包分解基本原理,提取钻机振动信号特征。在分别用小波包分解和时域特征指标提取钻机故障的特征矩阵之后,用支持向量机构造变转速齿轮故障分类器,将特征矩阵导入分类器中训练测试,获得了较高的准确度参数。

 

 

 

 

 

相关文章
|
1月前
|
机器学习/深度学习 运维 监控
利用深度学习进行系统健康监控:智能运维的新纪元
利用深度学习进行系统健康监控:智能运维的新纪元
113 30
|
1月前
|
传感器 机器学习/深度学习 人工智能
智能电网巡检与传感器数据AI自动分析
智能电网设备巡检与传感器数据分析利用AI技术实现自动化分析和预警。通过信息抽取、OCR技术和机器学习,系统可高效处理巡检报告和实时数据,生成精准报告并提供故障预判和早期识别。AI系统24小时监控设备状态,实时发出异常警报,确保设备正常运行,提升运维效率和可靠性。
|
1月前
|
传感器 机器学习/深度学习 人工智能
技术分享:智能电网巡检与传感器数据自动分析——AI助力设备状态实时监控与故障预警
这篇文章介绍了AI在智能电网巡检与传感器数据分析中的应用,通过信息抽取、OCR识别和机器学习等技术,实现设备状态监控和故障预警的自动化。AI系统能够高效处理巡检报告和传感器数据,精准识别设备故障并实时预警,显著提升了电网运营的安全性和可靠性。随着AI技术的发展,其在智能电网管理中的作用将日益重要。
|
8月前
|
传感器 数据采集 存储
物联网技术在智能环境监测中的部署与优化
物联网技术在智能环境监测中的部署与优化
|
4月前
|
机器学习/深度学习 人工智能 算法
AI辅助医疗影像:提高诊断准确性
【10月更文挑战第2天】医学影像技术是现代医学诊断的关键手段,但传统方法依赖医生经验,存在误诊风险。AI辅助医疗影像通过自动化图像识别、疾病预测和辅助诊断决策,显著提升了诊断准确性与效率。利用深度学习、数据增强及迁移学习等技术,AI不仅能快速分析影像,还能提供个性化诊疗建议,并实时监测疾病变化。尽管面临数据质量、算法可解释性和伦理法律等挑战,但多模态影像分析、跨学科合作及VR融合等趋势将推动AI在医疗影像领域的广泛应用,助力实现更精准、高效的医疗服务。
|
7月前
|
机器学习/深度学习 监控 安全
图像识别技术在安防监控中的应用探索
【7月更文挑战第31天】图像识别技术在安防监控中的应用已经取得了显著成果,为公共安全和社会稳定提供了有力保障。未来,随着技术的不断发展和创新,图像识别技术将在安防领域发挥更加重要的作用,为我们的生活带来更高的安全保障和便利。
|
9月前
|
Web App开发 JavaScript
|
9月前
|
机器学习/深度学习 传感器 算法
构建未来:基于机器学习的智能健康监测系统
【5月更文挑战第12天】 在数字医疗领域,智能健康监测系统的出现正在革新我们对健康管理和疾病预防的理解。本文将探讨一个基于机器学习技术的智能健康监测系统的设计与实现,它能够实时跟踪个体的健康指标并通过预测性分析提前警示潜在的健康问题。通过融合生物统计学、数据挖掘及模式识别等先进技术,该系统旨在为个人用户提供量身定制的健康建议,并为医疗专业人员提供决策支持。文章首先概述了系统框架和关键技术,随后详细讨论了机器学习模型的建立过程以及如何优化这些模型以提高预测的准确性。最后,我们通过实验结果验证了系统的有效性,并讨论了未来的发展方向。
|
传感器 机器学习/深度学习 监控
智能驾驶如何加强安全保障
智能驾驶如何加强安全保障
104 0
|
自动驾驶 计算机视觉 Python
《基于AidLux的自动驾驶智能预警应用方案》
基于AidLux的项目实战之 智能预警在AidLux上的部署与应用
《基于AidLux的自动驾驶智能预警应用方案》