【重新发现PostgreSQL之美】- 9 面向多值列的倒排索引GIN|RUM

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 大家好,这里是重新发现PostgreSQL之美 - 9 面向多值列的倒排索引GIN|RUM

背景



场景:

通用业务, 分词查询诉求.


挑战:

传统数据库没有分词、实时全文检索索引功能, 需要将数据同步到搜索引擎, 这种解决方案的弊端:


研发成本增加、

软硬件成本增加、

系统问题增多(同步延迟问题、同步异常问题、同步一致性问题)、

开发灵活性下降(无法同时过滤分词条件与表的其他条件, 需要业务层交换数据)

同时过滤分词条件与表的其他条件后, 无法有效的按RANK排序分词相似性

PG 解决方案:


1、倒排索引GIN:

支持多值类型的按元素检索: tsvector, array, json, xml, hstore, 任意字段组合搜索

一对多的数据模型

2、增强倒排索引RUM, RANK 加速方案:

RUM索引在posting list里面, 每个行号后面附加addon内容(文本向量的对应位置信息), 同时支持自定义addon信息.

addon的内容优势: 不需要回表搜索tuple内容. 降低IO, 提高性能.

文档


https://github.com/postgrespro/rum/blob/master/rum--1.3.sql


https://www.postgresql.org/docs/14/textsearch-controls.html#TEXTSEARCH-RANKING


如何计算rank :


0 (the default) ignores the document length

1 divides the rank by 1 + the logarithm of the document length

2 divides the rank by the document length

4 divides the rank by the mean harmonic distance between extents (this is implemented only by ts_rank_cd)

8 divides the rank by the number of unique words in document

16 divides the rank by 1 + the logarithm of the number of unique words in document

32 divides the rank by itself + 1

例子 GIN


分词搜索, 同时按rank排序返回


SELECT title, ts_rank_cd(textsearch, query) AS rank    

FROM apod, to_tsquery('neutrino|(dark & matter)') query    

WHERE query @@ textsearch    

ORDER BY rank DESC    

LIMIT 10;    

 

 

                    title                     |   rank    

-----------------------------------------------+----------    

Neutrinos in the Sun                          |      3.1    

The Sudbury Neutrino Detector                 |      2.4    

A MACHO View of Galactic Dark Matter          |  2.01317    

Hot Gas and Dark Matter                       |  1.91171    

The Virgo Cluster: Hot Plasma and Dark Matter |  1.90953    

Rafting for Solar Neutrinos                   |      1.9    

NGC 4650A: Strange Galaxy and Dark Matter     |  1.85774    

Hot Gas and Dark Matter                       |   1.6123    

Ice Fishing for Cosmic Neutrinos              |      1.6    

Weak Lensing Distorts the Universe            | 0.818218    

GIN索引: 分词检索在索引内完成, 但是rank排序需要回表, 将所有tuple找到后计算rank, 然后排序


GIN 数据和索引结构演示:


数据:


行号1: hello world    

行号2: digoal hello    

行号3: apple alibaba    

行号4: aliyun apple    

行号5: hello aliyun    

GIN 倒排索引结构:

token tree:


hello,world,digoal,apple,aliyun,alibaba    

posting list|tree:


hello: 行号1, 行号2, 行号5    

world: 行号1    

digoal: 行号2    

apple: 行号3, 行号4    

aliyun: 行号4, 行号5    

alibaba: 行号3    

例子 RUM


如何解决RANK需要回表的性能问题:


数据和索引结构演示:


数据:


行号1: hello world    

行号2: digoal hello    

行号3: apple alibaba    

行号4: aliyun apple    

行号5: hello aliyun    

RUM 倒排索引结构:

token tree:


hello,world,digoal,apple,aliyun,alibaba    

posting list|tree:


hello: 行号1 hello出现的位置, 行号2 hello出现的位置, 行号5 hello出现的位置    

world: 行号1 world出现的位置    

digoal: 行号2 digoal出现的位置    

apple: 行号3 apple出现的位置, 行号4 apple出现的位置    

aliyun: 行号4 aliyun出现的位置, 行号5 aliyun出现的位置    

alibaba: 行号3 alibaba出现的位置    

rum和gin对比例子


SELECT to_tsvector('english', 'a fat  cat sat on a mat - it ate a fat rats');    

                 to_tsvector    

-----------------------------------------------------    

'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4    

生成随机文本的例子


postgres=# select to_tsvector( string_agg(chr((array[32,97,98,99,100,101])[ceil(random()*6)]),'')) from generate_series(1,100);    

                                                                   to_tsvector                                                                        

----------------------------------------------------------------------------------------------------------------------------------------------------    

'abbcb':9 'bdc':4 'beaeeddddbdbdb':11 'beeaba':12 'dbdbb':5 'dccbdbbebd':1 'dcccbbbecac':3 'dccec':10 'decaabc':6 'ebacaececd':2 'ecbcb':7 'edd':8    

(1 row)    

 

 

create or replace function fu() returns tsvector as $$    

  select to_tsvector( string_agg(chr((array[32,97,98,99,100,101])[ceil(random()*6)]),'')) from generate_series(1,100);    

$$ language sql strict volatile;    

CREATE FUNCTION    

写入111万随机文本数据


postgres=# create unlogged table tsv (id serial8 primary key, tsv tsvector);    

CREATE TABLE    

 

 

 

postgres=# insert into tsv (tsv) select fu() from generate_series(1,10000);    

INSERT 0 10000    

Time: 382.318 ms    

postgres=# insert into tsv (tsv) select fu() from generate_series(1,100000);    

INSERT 0 100000    

Time: 3804.033 ms (00:03.804)    

postgres=# insert into tsv (tsv) select fu() from generate_series(1,1000000);    

INSERT 0 1000000    

Time: 37887.880 ms (00:37.888)    

 

postgres=# select * from tsv limit 10;    

id |                                                                                      tsv                                                                                          

----+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------    

 1 | 'adb':1 'bbebebdcd':5 'c':4 'ca':6 'cabddbecbcdabcdcbabbbdb':9 'cabeaaea':8 'cbbadaebdebedabdd':10 'd':2,12 'dac':11 'ddbaadebeb':7 'eceaabddb':3    

 2 | 'acdaaaa':10 'ad':6 'adcdcebeaeecc':4 'bcbdac':8 'bed':12 'bedaacabdbeceecaa':2 'cbabcddcda':7 'cecdec':1 'd':11 'dbbbcbacbd':9 'edddebcacea':5    

 3 | 'acececccbabadbdeeec':11 'aeadacbecad':8 'bdbadbadceedcadaeb':9 'bddab':4 'cebedbedb':3 'd':1,7 'da':2 'dda':12 'ddaacb':13 'ec':10 'eeadbeca':6    

 4 | 'aadccceb':18 'ae':5 'bcbbceda':3 'bdcd':13 'cabeac':12 'cb':2 'cbadccb':15 'cbeaba':8 'cbeb':6 'ccbbdbcaa':14 'cecbaeecb':7 'db':16 'dead':4 'e':1,11    

 5 | 'ab':2 'bc':12 'cadbaebeeabeec':7 'cce':6 'dab':9 'dadbccabbd':4 'dadddb':3 'db':1 'eb':10 'ecaadac':11 'eddbebcbabdccacbccde':8 'edddbcbde':5    

 6 | 'ae':11 'ba':9 'bb':12 'bcdd':7 'bd':15 'bdec':4 'beada':10 'caa':1 'caacc':14 'cabcbedadadceadbdbecec':8 'ddcdbaeeecad':13 'de':2 'dea':6 'deeaabba':3 'eeaad':5    

 7 | 'abaddcb':13 'acbedbbdceadcdda':10 'bcece':11 'cacbedc':3 'ccdb':2 'cd':7 'db':6 'dbebdd':12 'deb':8 'eaecba':4 'ecabeb':1 'ededdbbdacad':9 'eecd':5    

 8 | 'aaccccc':5 'aada':13 'abbddcbbcb':3 'b':7 'bae':1 'bb':4 'bcabceeabc':16 'bdbac':2 'bddaceeb':11 'cdcdceec':15 'cddea':9 'cecaa':8 'dbee':10 'e':14 'ee':6 'eedeba':12    

 9 | 'abcbcbd':1 'abdaa':12 'adaecaa':7 'caaabac':5 'caeeeebdc':6 'ccdd':9 'ddeab':10 'eaeebbbcadcbaac':4 'ebcddadeacb':11 'ebeeb':3 'ecbbcecaa':8 'ee':2    

10 | 'aabadcab':14 'abaceeebdbeaaadbedccc':15 'b':16 'bcccdd':13 'bceedb':11 'c':2 'cc':12 'ccc':9 'cedac':4 'dadbba':7 'daee':8 'dd':10 'dddde':17 'e':6 'ecbea':5 'ed':1 'eeec':3    

(10 rows)    

搜索用例


postgres=# explain (analyze,verbose,timing,costs,buffers)    

select *, ts_rank(tsv , to_tsquery('abc & c')) from tsv    

where tsv @@ to_tsquery('abc & c')    

order by ts_rank(tsv, to_tsquery('abc & c')) desc    

limit 10;    

1、GIN 索引, 需要回表计算rank:


                                                                  QUERY PLAN                                                                      

------------------------------------------------------------------------------------------------------------------------------------------------    

Limit  (cost=9763.40..9763.42 rows=10 width=215) (actual time=39.030..39.033 rows=10 loops=1)    

  Output: id, tsv, (ts_rank(tsv, to_tsquery('abc & c'::text)))    

  Buffers: shared hit=7336    

  ->  Sort  (cost=9763.40..9782.45 rows=7622 width=215) (actual time=39.029..39.031 rows=10 loops=1)    

        Output: id, tsv, (ts_rank(tsv, to_tsquery('abc & c'::text)))    

        Sort Key: (ts_rank(tsv.tsv, to_tsquery('abc & c'::text))) DESC    

        Sort Method: top-N heapsort  Memory: 30kB    

        Buffers: shared hit=7336    

        ->  Index Scan using idx_tsv_1 on public.tsv  (cost=11.25..9598.69 rows=7622 width=215) (actual time=20.434..37.754 rows=7531 loops=1)    

              Output: id, tsv, ts_rank(tsv, to_tsquery('abc & c'::text))    

              Index Cond: (tsv.tsv @@ to_tsquery('abc & c'::text))    

              Buffers: shared hit=7336    

Planning:    

  Buffers: shared hit=2    

Planning Time: 0.199 ms    

Execution Time: 39.427 ms    

(16 rows)    

 

Time: 40.055 ms    

 

 

 

 

 

postgres=#  select *, ts_rank_cd(tsv , to_tsquery('abc & c'),32) from tsv where tsv @@ to_tsquery('abc & c') order by ts_rank_cd(tsv, to_tsquery('abc & c'),32) desc limit 10;    

  id   |                                                                                        tsv                                                                                        | ts_rank_cd    

--------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------    

386419 | 'abc':9,12 'abceadba':3 'b':8,16 'badeebdebbb':4 'bdd':20 'bea':2 'c':10,14 'cad':7 'cbedbbdeb':5 'ccdadcda':6 'd':1,15 'ddeceb':13 'deabdd':11 'e':18                            | 0.16666667    

568798 | 'abc':12 'addb':14 'aecdcecdbcebdbceeebaebca':4 'c':11,13 'cceddac':10 'd':1,3 'dab':6 'dcaddeeb':7 'de':8 'ea':5 'eadbadeacb':15 'edbb':2 'eecddada':9                           | 0.16666667    

246969 | 'aa':3 'aabbdaaea':15 'abc':6 'adaecaceec':8 'aea':9 'aebb':20 'beed':14 'c':4,5,7,17 'dbaa':18 'dbe':12 'dcdda':13 'dd':16 'ebadeec':10 'ebcce':1 'ebdbedc':19                   | 0.16666667    

276756 | 'aba':13 'abc':8 'aeecdceedaacdec':16 'b':5,6 'babba':12 'beadbcdeeeecbbbde':15 'c':7,9 'cabaacadb':11 'cb':10 'dcaebdbabddd':1 'dedaadd':14 'e':2 'ebdb':4                       | 0.16666667    

534425 | 'aa':7 'abc':19 'b':2 'baebdacbc':13 'c':9,18,20 'cabcdaaada':5 'cc':17 'cd':4 'ce':21 'd':12 'dcadccbcddc':15 'dcbcacec':11 'dea':1 'e':14 'ea':6 'eceeeadc':16 'edd':10 'ede':3 | 0.16666667    

545684 | 'abc':11 'c':10,12 'caebdacdeabbccadec':3 'cbecc':2 'ccace':15 'cdb':13 'cddaccbacbcb':8 'cecadbbecda':5 'ddaab':6 'e':4,14 'eaeccedbdbc':1 'ebdeb':7                             | 0.16666667    

137518 | 'abc':13 'accebbedeabbdaa':2 'c':4,9,12,14 'cba':7 'cc':16 'ce':10 'dbbeebbdbd':18 'dce':8 'ddaeab':17 'eabadc':3 'eac':1 'eacc':11 'ecabdcddbecaebb':15 'ed':5                   | 0.16666667    

227131 | 'abc':2 'abeaacaeceaed':7 'b':12 'baae':13 'bddccbabcbbcaa':9 'c':1,3,11 'caeabd':8 'cbadea':5 'ccaacdeeabccabc':10 'dcac':6 'eadaebbcccac':4 'ed':14                             | 0.16666667    

264722 | 'abc':4 'acaabbeacacdbcaec':10 'ad':1 'ada':2 'c':3,5,6 'cbbcbcadee':13 'd':14 'dbdc':8 'decaceaaa':7 'deec':11 'ebcdaecea':12 'ecc':16 'ecdbebbbca':9                            | 0.16666667    

634783 | 'aaaba':11 'aba':10 'abbc':5 'abc':14 'ad':2 'adca':16 'bdbbb':6 'c':9,13,15 'cbacccadacbbdeda':1 'cbb':17 'd':4 'dcbd':3 'debdadd':12 'dedadeaeecacaceceebdd':8 'ea':7           | 0.16666667    

(10 rows)    

 

Time: 63.782 ms    

2、RUM 索引, 不需要回表计算rank:


postgres=# explain (analyze,verbose,timing,costs,buffers) select *,tsv <=> to_tsquery('abc & c') from tsv where tsv @@ to_tsquery('abc & c') order by tsv <=> to_tsquery('abc & c') limit 10;    

                                                              QUERY PLAN                                                                  

----------------------------------------------------------------------------------------------------------------------------------------    

Limit  (cost=11.25..23.91 rows=10 width=215) (actual time=35.455..35.547 rows=10 loops=1)    

  Output: id, tsv, ((tsv <=> to_tsquery('abc & c'::text)))    

  Buffers: shared hit=1086    

  ->  Index Scan using idx_tsv_1 on public.tsv  (cost=11.25..8899.62 rows=7021 width=215) (actual time=35.453..35.526 rows=10 loops=1)    

        Output: id, tsv, (tsv <=> to_tsquery('abc & c'::text))    

        Index Cond: (tsv.tsv @@ to_tsquery('abc & c'::text))    

        Order By: (tsv.tsv <=> to_tsquery('abc & c'::text))    

        Buffers: shared hit=1086    

Planning:    

  Buffers: shared hit=1    

Planning Time: 0.187 ms    

Execution Time: 36.395 ms    

(12 rows)    

 

Time: 37.025 ms    

 

 

 

 

 

postgres=#  select *,tsv <=> to_tsquery('abc & c') from tsv where tsv @@ to_tsquery('abc & c') order by tsv <=> to_tsquery('abc & c') limit 10;    

  id    |                                                                                        tsv                                                                                        | ?column?    

---------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------    

 534425 | 'aa':7 'abc':19 'b':2 'baebdacbc':13 'c':9,18,20 'cabcdaaada':5 'cc':17 'cd':4 'ce':21 'd':12 'dcadccbcddc':15 'dcbcacec':11 'dea':1 'e':14 'ea':6 'eceeeadc':16 'edd':10 'ede':3 | 4.112335    

1082907 | 'abc':9 'aeac':12 'bac':5 'baddaecd':6 'bc':7 'c':4,8,10 'd':3 'dadebcd':2 'dbebecabcaaeedaacdaaceebbbadeeeaad':11 'eaab':1 'ebaaebdaaaedc':13 'ed':14                            | 4.112335    

 264722 | 'abc':4 'acaabbeacacdbcaec':10 'ad':1 'ada':2 'c':3,5,6 'cbbcbcadee':13 'd':14 'dbdc':8 'decaceaaa':7 'deec':11 'ebcdaecea':12 'ecc':16 'ecdbebbbca':9                            | 4.112335    

 568798 | 'abc':12 'addb':14 'aecdcecdbcebdbceeebaebca':4 'c':11,13 'cceddac':10 'd':1,3 'dab':6 'dcaddeeb':7 'de':8 'ea':5 'eadbadeacb':15 'edbb':2 'eecddada':9                           | 4.112335    

 545684 | 'abc':11 'c':10,12 'caebdacdeabbccadec':3 'cbecc':2 'ccace':15 'cdb':13 'cddaccbacbcb':8 'cecadbbecda':5 'ddaab':6 'e':4,14 'eaeccedbdbc':1 'ebdeb':7                             | 4.112335    

 634783 | 'aaaba':11 'aba':10 'abbc':5 'abc':14 'ad':2 'adca':16 'bdbbb':6 'c':9,13,15 'cbacccadacbbdeda':1 'cbb':17 'd':4 'dcbd':3 'debdadd':12 'dedadeaeecacaceceebdd':8 'ea':7           | 4.112335    

 743324 | 'abc':14 'aeaddecbbd':12 'c':13,15,21 'ca':19 'ccca':1 'cdbbebdb':17 'cdc':2 'cdeeea':11 'd':4 'dadb':7 'db':8 'dbbcb':10 'dcdbeab':5 'ece':3 'ed':18 'eedcddddb':9               | 4.112335    

 905287 | 'abc':15 'ad':12 'b':10 'babebaca':17 'bbeebbedaacc':18 'bccdbc':1 'bcebb':9 'c':14,16 'cebaaaea':2 'd':13 'dc':7,11 'dca':4 'ddaebdddbc':8 'ddddebdbd':5 'e':6 'ebddb':3         | 4.112335    

 826801 | 'abc':4 'accbbe':11 'aebeedcebdcb':7 'b':1,9 'ba':13 'bbae':14 'bc':16 'bcecdeceeebad':17 'c':3,5 'cbcbbdeb':6 'd':15 'dcadbebce':12 'ebeceaabad':8 'ed':10 'ee':2                | 4.112335    

 246969 | 'aa':3 'aabbdaaea':15 'abc':6 'adaecaceec':8 'aea':9 'aebb':20 'beed':14 'c':4,5,7,17 'dbaa':18 'dbe':12 'dcdda':13 'dd':16 'ebadeec':10 'ebcce':1 'ebdbedc':19                   | 4.112335    

(10 rows)    

 

Time: 38.362 ms    

例子2: RUM addon 其他字段信息到posting tree


rum_TYPE_ops


For types: int2, int4, int8, float4, float8, money, oid, time, timetz, date,

interval, macaddr, inet, cidr, text, varchar, char, bytea, bit, varbit,

numeric, timestamp, timestamptz


Supported operations: <, <=, =, >=, > for all types and

<=>, <=| and |=> for int2, int4, int8, float4, float8, money, oid,

timestamp and timestamptz types.


Supports ordering by <=>, <=| and |=> operators. Can be used with

rum_tsvector_addon_ops, rum_tsvector_hash_addon_ops' and rum_anyarray_addon_ops` operator classes.


rum_tsvector_addon_ops


For type: tsvector


This operator class stores tsvector lexems with any supported by module

field. There is the example.


Let us assume we have the table:


CREATE TABLE tsts (id int, t tsvector, d timestamp);    

 

\copy tsts from 'rum/data/tsts.data'    

 

CREATE INDEX tsts_idx ON tsts USING rum (t rum_tsvector_addon_ops, d)    

   WITH (attach = 'd', to = 't');    

Now we can execute the following queries:


EXPLAIN (costs off)    

   SELECT id, d, d <=> '2016-05-16 14:21:25' FROM tsts WHERE t @@ 'wr&qh' ORDER BY d <=> '2016-05-16 14:21:25' LIMIT 5;    

                                   QUERY PLAN    

-----------------------------------------------------------------------------------    

Limit    

  ->  Index Scan using tsts_idx on tsts    

        Index Cond: (t @@ '''wr'' & ''qh'''::tsquery)    

        Order By: (d <=> 'Mon May 16 14:21:25 2016'::timestamp without time zone)    

(4 rows)    

 

SELECT id, d, d <=> '2016-05-16 14:21:25' FROM tsts WHERE t @@ 'wr&qh' ORDER BY d <=> '2016-05-16 14:21:25' LIMIT 5;    

id  |                d                |   ?column?    

-----+---------------------------------+---------------    

355 | Mon May 16 14:21:22.326724 2016 |      2.673276    

354 | Mon May 16 13:21:22.326724 2016 |   3602.673276    

371 | Tue May 17 06:21:22.326724 2016 |  57597.326724    

406 | Wed May 18 17:21:22.326724 2016 | 183597.326724    

415 | Thu May 19 02:21:22.326724 2016 | 215997.326724    

(5 rows)    

Warning: Currently RUM has bogus behaviour when one creates an index using ordering over pass-by-reference additional information. This is due to the fact that posting trees have fixed length right bound and fixed length non-leaf posting items. It isn't allowed to create such indexes.

rum_tsvector_hash_addon_ops


For type: tsvector


This operator class stores hash of tsvector lexems with any supported by module

field.


Doesn't support prefix search.


rum_anyarray_addon_ops


For type: anyarray


This operator class stores anyarrray elements with any supported by module field.


rum_anyarray_addon_ops 的例子


postgres=# create extension rum;    

CREATE EXTENSION    

 

create table tbl (    

id serial8 primary key,    

a int[],    

n int,    

crt_time timestamp    

);    

 

 

create index idx_tbl_1 on tbl using rum (a rum_anyarray_addon_ops, n) with (attach='n', to='a');    

 

 

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where a @> array[1,2,3] and n <= 1;    

 

                                                         QUERY PLAN                                                              

-------------------------------------------------------------------------------------------------------------------------------    

Index Scan using idx_tbl_1 on public.tbl  (cost=15.40..38.90 rows=20 width=53) (actual time=130.694..130.711 rows=20 loops=1)    

  Output: id, a, n, crt_time    

  Index Cond: ((tbl.a @> '{1,2,3}'::integer[]) AND (tbl.n <= 1))    

  Buffers: shared hit=1768    

Planning:    

  Buffers: shared hit=1    

Planning Time: 0.092 ms    

Execution Time: 130.735 ms    

(8 rows)    

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
关系型数据库 PostgreSQL
PostgreSQL表用户列最大个数
PostgreSQL表用户列最大个数
229 0
|
SQL 存储 NoSQL
分布式 PostgreSQL 集群(Citus),分布式表中的分布列选择最佳实践
分布式 PostgreSQL 集群(Citus),分布式表中的分布列选择最佳实践
621 0
分布式 PostgreSQL 集群(Citus),分布式表中的分布列选择最佳实践
|
算法 关系型数据库 测试技术
PostgreSQL 相似搜索插件介绍大汇总 (cube,rum,pg_trgm,smlar,imgsmlr,pg_similarity) (rum,gin,gist)
标签 PostgreSQL , cube , rum , pg_trgm , smlar , imgsmlr , pg_similarity , gin , gist , 倒排 , 相似 , 向量 , 特征 , 图像 , 文本 , 字符串 , 全文检索 背景 在搜索业务场景中,相似搜索是一个非常常见的需求。
3811 0
|
SQL 关系型数据库 数据库
PostgreSQL 设计优化case - 大宽表任意字段组合查询索引如何选择(btree, gin, rum) - (含单个索引列数超过32列的方法)
标签 PostgreSQL , adhoc查询 , 大宽表 , 任意字段组合查询 , 索引 , btree , gin , rum 背景 大宽表,任意字段组合查询,透视。是实时分析系统中的常见需求: 1、实时写入。
2679 0
|
Web App开发 关系型数据库 测试技术
PostgreSQL pageinspect 诊断与优化GIN (倒排) 索引合并延迟导致的查询性能下降问题
标签 PostgreSQL , brin索引 , gin索引 , 合并延迟 , gin_pending_list_limit , 查询性能下降 背景 GIN索引为PostgreSQL数据库多值类型的倒排索引,一条记录可能涉及到多个GIN索引中的KEY,所以如果写入时实时合并索引,会导致IO急剧增加,写入RT必然增加。
1904 0
|
关系型数据库 分布式数据库 PolarDB
《阿里云产品手册2022-2023 版》——PolarDB for PostgreSQL
《阿里云产品手册2022-2023 版》——PolarDB for PostgreSQL
365 0
|
存储 缓存 关系型数据库
|
存储 SQL 并行计算
PolarDB for PostgreSQL 开源必读手册-开源PolarDB for PostgreSQL架构介绍(中)
PolarDB for PostgreSQL 开源必读手册-开源PolarDB for PostgreSQL架构介绍
420 0
|
存储 算法 安全
PolarDB for PostgreSQL 开源必读手册-开源PolarDB for PostgreSQL架构介绍(下)
PolarDB for PostgreSQL 开源必读手册-开源PolarDB for PostgreSQL架构介绍
384 0
|
关系型数据库 分布式数据库 开发工具

热门文章

最新文章

下一篇
无影云桌面