【重新发现PostgreSQL之美】 - 6 index链表跳跳糖 (CTE recursive 递归的详细用例)

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 大家好,这里是重新发现PostgreSQL之美 - 6 index链表跳跳糖 (CTE recursive 递归的详细用例)

背景


CTE 递归语法是PG 8.4引入的功能, 至今已经10多年, 非常文档.

CTE 递归可以解决很多问题: 时序场景取所有传感器最新的value, 图式数据的搜索(一度人脉,N度人脉,最近的路径关系), 树状数据的累加分析, 知识图谱, 去稀疏数据的唯一值等.

使用CTE递归比通用的方法通常有数百倍的性能提升.

用例

假设传感器有1万个, 每个传感器每秒上传一条记录.

取出今天处于活跃状态(有数据)的传感器的最后一个值.

1、创建测试表

create unlogged table tbl_sensor_log (  
  id serial8 ,     
  sid int, -- 传感器ID (例如 网约车、警车、巡逻车、共享单车、物联网传感器等设备)  
  val jsonb, -- 传感器上传的数据  
  crt_time timestamp  -- 上传时间  
)  
partition by range (crt_time)  
;   

2、创建分区

do language plpgsql $$  
declare  
begin  
  for i in 0..365 loop  
    execute format($_$  
        create unlogged table tbl_sensor_log_%s PARTITION of tbl_sensor_log   
        for values from (%L) to (%L)  
    $_$, to_char(current_date+i, 'yyyymmdd'), current_date+i, current_date+i+1);  
  end loop;  
end;  
$$;  

3、创建索引

insert into tbl_sensor_log (sid, val, crt_time)  
  select random()*10000 , row_to_json(row(random(),random(),clock_timestamp())), current_date+(round(random()::numeric*72::numeric,2)||' hour')::interval  
from generate_series(1,50000000);  

4、写入5000万条记录, 均匀分布在最近3天的分区内

insert into tbl_sensor_log (sid, val, crt_time)  
  select random()*10000 , row_to_json(row(random(),random(),clock_timestamp())), current_date+(round(random()::numeric*72::numeric,2)||' hour')::interval  
from generate_series(1,50000000);  

取出今天处于活跃状态(有数据)的传感器的最后一个值.

方法1: 使用传统的窗口查询

select id,sid,val,crt_time from   
(  
select *, row_number() over w as RN  
  from tbl_sensor_log   
  where crt_time >= current_date and crt_time < current_date+1   
  window w as (partition by sid order by crt_time desc)  
) t  
where rn=1;  
                                                                                    QUERY PLAN                                                                                      
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Subquery Scan on t  (cost=5057407.30..5598899.49 rows=83306 width=119) (actual time=40763.507..52716.622 rows=10001 loops=1)  
   Filter: (t.rn = 1)  
   Rows Removed by Filter: 16653784  
   ->  WindowAgg  (cost=5057407.30..5390633.26 rows=16661298 width=127) (actual time=40763.503..51533.043 rows=16663785 loops=1)  
         ->  Sort  (cost=5057407.30..5099060.55 rows=16661298 width=119) (actual time=40763.483..44945.556 rows=16663785 loops=1)  
               Sort Key: tbl_sensor_log.sid, tbl_sensor_log.crt_time DESC  
               Sort Method: external merge  Disk: 2177080kB  
               ->  Append  (cost=0.00..1257703.57 rows=16661298 width=119) (actual time=0.065..5597.541 rows=16663785 loops=1)  
                     Subplans Removed: 365  
                     ->  Seq Scan on tbl_sensor_log_20210529 tbl_sensor_log_1  (cost=0.00..683635.38 rows=16660933 width=119) (actual time=0.064..4066.655 rows=16663785 loops=1)  
                           Filter: ((crt_time >= CURRENT_DATE) AND (crt_time < (CURRENT_DATE + 1)))  
 Planning Time: 219.559 ms  
 Execution Time: 53133.463 ms  
(13 rows)  
                                                                                                          QUERY PLAN                                                                                                             
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Subquery Scan on t  (cost=65.16..10962058.77 rows=83306 width=119) (actual time=0.041..104082.386 rows=10001 loops=1)  
   Filter: (t.rn = 1)  
   Rows Removed by Filter: 16653784  
   ->  WindowAgg  (cost=65.16..10753792.55 rows=16661298 width=127) (actual time=0.040..102532.935 rows=16663785 loops=1)  
         ->  Merge Append  (cost=65.16..10462219.83 rows=16661298 width=119) (actual time=0.029..92266.387 rows=16663785 loops=1)  
               Sort Key: tbl_sensor_log.sid, tbl_sensor_log.crt_time DESC  
               Subplans Removed: 365  
               ->  Index Scan using tbl_sensor_log_20210529_sid_crt_time_idx on tbl_sensor_log_20210529 tbl_sensor_log_1  (cost=0.44..9177871.39 rows=16660933 width=119) (actual time=0.029..89908.207 rows=16663785 loops=1)  
                     Index Cond: ((crt_time >= CURRENT_DATE) AND (crt_time < (CURRENT_DATE + 1)))  
 Planning Time: 39.511 ms  
 Execution Time: 104088.128 ms  
(11 rows)  

方法2: 使用索引链表跳跳糖

递归, 每次扫描定位到1个目标SID, 然后跳到第二个SID, 而不是通过索引链表顺序扫描.

链表顺序扫描的缺点: 整张索引的时间范围内的所有叶子结点的每个page都要扫描到, 性能烂到家.

with recursive tmp as (  
(select t from tbl_sensor_log as t where crt_time >= current_date and crt_time < current_date+1 order by sid, crt_time desc limit 1)  
union all   
select (select tbl_sensor_log from tbl_sensor_log where sid>(tmp.t).sid   
        and crt_time >= current_date and crt_time < current_date+1 order by sid, crt_time desc limit 1) as t  
from tmp where tmp.* is not null  
)  
select (tmp.t).* from tmp   
where tmp.* is not null;  
                                                                                QUERY PLAN                                                                                  
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 CTE Scan on tmp  (cost=6650.50..6652.52 rows=100 width=52)  
   Filter: (tmp.* IS NOT NULL)  
   CTE tmp  
     ->  Recursive Union  (cost=65.16..6650.50 rows=101 width=32)  
           ->  Subquery Scan on "*SELECT* 1"  (cost=65.16..65.80 rows=1 width=32)  
                 ->  Limit  (cost=65.16..65.79 rows=1 width=44)  
                       ->  Merge Append  (cost=65.16..10462219.83 rows=16661298 width=44)  
                             Sort Key: t.sid, t.crt_time DESC  
                             Subplans Removed: 365  
                             ->  Index Scan using tbl_sensor_log_20210529_sid_crt_time_idx on tbl_sensor_log_20210529 t_1  (cost=0.44..9177871.39 rows=16660933 width=44)  
                                   Index Cond: ((crt_time >= CURRENT_DATE) AND (crt_time < (CURRENT_DATE + 1)))  
           ->  WorkTable Scan on tmp tmp_1  (cost=0.00..658.27 rows=10 width=32)  
                 Filter: (tmp_1.* IS NOT NULL)  
(13 rows)  
                                                                                                              QUERY PLAN                                                                                                                
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 CTE Scan on tmp  (cost=6650.50..6652.52 rows=100 width=52) (actual time=0.036..124.680 rows=10001 loops=1)  
   Filter: (tmp.* IS NOT NULL)  
   Rows Removed by Filter: 1  
   CTE tmp  
     ->  Recursive Union  (cost=65.16..6650.50 rows=101 width=32) (actual time=0.032..119.486 rows=10002 loops=1)  
           ->  Subquery Scan on "*SELECT* 1"  (cost=65.16..65.80 rows=1 width=32) (actual time=0.031..0.033 rows=1 loops=1)  
                 ->  Limit  (cost=65.16..65.79 rows=1 width=44) (actual time=0.031..0.032 rows=1 loops=1)  
                       ->  Merge Append  (cost=65.16..10462219.83 rows=16661298 width=44) (actual time=0.030..0.030 rows=1 loops=1)  
                             Sort Key: t.sid, t.crt_time DESC  
                             Subplans Removed: 365  
                             ->  Index Scan using tbl_sensor_log_20210529_sid_crt_time_idx on tbl_sensor_log_20210529 t_1  (cost=0.44..9177871.39 rows=16660933 width=44) (actual time=0.029..0.030 rows=1 loops=1)  
                                   Index Cond: ((crt_time >= CURRENT_DATE) AND (crt_time < (CURRENT_DATE + 1)))  
           ->  WorkTable Scan on tmp tmp_1  (cost=0.00..658.27 rows=10 width=32) (actual time=0.011..0.011 rows=1 loops=10002)  
                 Filter: (tmp_1.* IS NOT NULL)  
                 Rows Removed by Filter: 0  
                 SubPlan 1  
                   ->  Limit  (cost=65.16..65.81 rows=1 width=44) (actual time=0.011..0.011 rows=1 loops=10001)  
                         ->  Merge Append  (cost=65.16..3572009.02 rows=5554009 width=44) (actual time=0.011..0.011 rows=1 loops=10001)  
                               Sort Key: tbl_sensor_log.sid, tbl_sensor_log.crt_time DESC  
                               Subplans Removed: 365  
                               ->  Index Scan using tbl_sensor_log_20210529_sid_crt_time_idx on tbl_sensor_log_20210529 tbl_sensor_log_1  (cost=0.44..3115515.85 rows=5553644 width=44) (actual time=0.010..0.010 rows=1 loops=10001)  
                                     Index Cond: ((sid > (tmp_1.t).sid) AND (crt_time >= CURRENT_DATE) AND (crt_time < (CURRENT_DATE + 1)))  
 Planning Time: 69.016 ms  
 Execution Time: 125.866 ms  
(24 rows)  

方法3: 使用subquery

但是, 需要维护一张SID表, 实际业务逻辑可能比这复杂, SID表可能没有这么好维护.

而且还有1个问题: 今天没有活跃的SID也会被查出来. 如果选择过滤今天不活跃的记录, 需要多次评估, 性能就会下降.

create table tbl_sensor (sid int primary key);  
insert into tbl_sensor select generate_series(0,10010);  
select (select tbl_sensor_log from tbl_sensor_log where sid=t.sid and crt_time >= current_date and crt_time < current_date+1 order by crt_time desc limit 1) as val  
from tbl_sensor as t;  
                                                                             QUERY PLAN                                                                               
--------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Index Only Scan using tbl_sensor_pkey on tbl_sensor t  (cost=0.29..509812.03 rows=10011 width=32)  
   SubPlan 1  
     ->  Limit  (cost=49.58..50.91 rows=1 width=40)  
           ->  Append  (cost=49.58..2751.07 rows=2036 width=40)  
                 Subplans Removed: 365  
                 ->  Index Scan using tbl_sensor_log_20210529_sid_crt_time_idx on tbl_sensor_log_20210529 tbl_sensor_log_1  (cost=0.44..1880.54 rows=1671 width=40)  
                       Index Cond: ((sid = t.sid) AND (crt_time >= CURRENT_DATE) AND (crt_time < (CURRENT_DATE + 1)))  
(7 rows)  
                                                                                                    QUERY PLAN                                                                                                      
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Index Only Scan using tbl_sensor_pkey on tbl_sensor t  (cost=0.29..509812.03 rows=10011 width=32) (actual time=0.039..116.315 rows=10011 loops=1)  
   Heap Fetches: 0  
   SubPlan 1  
     ->  Limit  (cost=49.58..50.91 rows=1 width=40) (actual time=0.011..0.011 rows=1 loops=10011)  
           ->  Append  (cost=49.58..2751.07 rows=2036 width=40) (actual time=0.011..0.011 rows=1 loops=10011)  
                 Subplans Removed: 365  
                 ->  Index Scan using tbl_sensor_log_20210529_sid_crt_time_idx on tbl_sensor_log_20210529 tbl_sensor_log_1  (cost=0.44..1880.54 rows=1671 width=40) (actual time=0.010..0.010 rows=1 loops=10011)  
                       Index Cond: ((sid = t.sid) AND (crt_time >= CURRENT_DATE) AND (crt_time < (CURRENT_DATE + 1)))  
 Planning Time: 40.798 ms  
 Execution Time: 117.059 ms  
(10 rows)  

过滤不活跃的SID将增加计算量, 性能有下降.

select * from   
(  
select (select tbl_sensor_log from tbl_sensor_log where sid=t.sid and crt_time >= current_date and crt_time < current_date+1 order by crt_time desc limit 1) as val  
from tbl_sensor as t  
) t1  
where t1.val is not null;   
                                                                                                    QUERY PLAN                                                                                                      
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Index Only Scan using tbl_sensor_pkey on tbl_sensor t  (cost=0.29..1016895.27 rows=9961 width=32) (actual time=0.044..173.412 rows=10001 loops=1)  
   Filter: ((SubPlan 2) IS NOT NULL)  
   Rows Removed by Filter: 10  
   Heap Fetches: 0  
   SubPlan 1  
     ->  Limit  (cost=49.58..50.91 rows=1 width=40) (actual time=0.007..0.007 rows=1 loops=10001)  
           ->  Append  (cost=49.58..2751.07 rows=2036 width=40) (actual time=0.007..0.007 rows=1 loops=10001)  
                 Subplans Removed: 365  
                 ->  Index Scan using tbl_sensor_log_20210529_sid_crt_time_idx on tbl_sensor_log_20210529 tbl_sensor_log_1  (cost=0.44..1880.54 rows=1671 width=40) (actual time=0.006..0.006 rows=1 loops=10001)  
                       Index Cond: ((sid = t.sid) AND (crt_time >= CURRENT_DATE) AND (crt_time < (CURRENT_DATE + 1)))  
   SubPlan 2  
     ->  Limit  (cost=49.58..50.91 rows=1 width=40) (actual time=0.010..0.010 rows=1 loops=10011)  
           ->  Append  (cost=49.58..2751.07 rows=2036 width=40) (actual time=0.010..0.010 rows=1 loops=10011)  
                 Subplans Removed: 365  
                 ->  Index Scan using tbl_sensor_log_20210529_sid_crt_time_idx on tbl_sensor_log_20210529 tbl_sensor_log_3  (cost=0.44..1880.54 rows=1671 width=40) (actual time=0.009..0.009 rows=1 loops=10011)  
                       Index Cond: ((sid = t.sid) AND (crt_time >= CURRENT_DATE) AND (crt_time < (CURRENT_DATE + 1)))  
 Planning Time: 68.114 ms  
 Execution Time: 174.239 ms  
(18 rows)  

更多CTE的应用场景

202103/20210320_02.md  《PostgreSQL 14 preview - recovery 性能增强 - recovery_init_sync_method=syncfs - 解决表很多时, crash recovery 递归open所有file的性能问题 - 需Linux新内核支持》
202102/20210201_03.md  《PostgreSQL 14 preview - SQL标准增强, 递归(CTE)图式搜索增加广度优先、深度优先语法, 循环语法 - breadth- or depth-first search orders and detect cycles》
202011/20201125_01.md  《PostgreSQL 递归查询在分组合并中的用法》
202006/20200615_01.md  《递归+排序字段加权 skip scan 解决 窗口查询多列分组去重的性能问题》
202005/20200515_01.md  《PostgreSQL 排序去重limit查询优化 - 递归 vs group分组 (loop降到极限, block scan降到极限)》
202003/20200329_01.md  《PostgreSQL 家族图谱、社交图谱、树状关系、藤状分佣、溯源、等场景实践 - 递归,with recursive query (有向无环 , 有向有环)》
202002/20200228_01.md  《累加链条件过滤 - 递归、窗口、UDF、游标、模拟递归、scan 剪切》
201903/20190318_04.md  《PostgreSQL 并行计算解说 之29 - parallel 递归查询, 树状查询, 异构查询, CTE, recursive CTE, connect by》
201808/20180808_02.md  《PostgreSQL 递归应用实践 - 非“传销”的高并发实时藤、树状佣金分配体系》
201804/20180406_01.md  《PostgreSQL 递归妙用案例 - 分组数据去重与打散》
201803/20180323_03.md  《PostgreSQL Oracle 兼容性之 - INDEX SKIP SCAN (递归查询变态优化) 非驱动列索引扫描优化》
201705/20170519_01.md  《PostgrSQL 递归SQL的几个应用 - 极客与正常人的思维》
201703/20170324_01.md  《PostgreSQL 递归查询CASE - 树型路径分组输出》
201612/20161201_01.md  《用PostgreSQL找回618秒逝去的青春 - 递归收敛优化》
201611/20161128_02.md  《distinct xx和count(distinct xx)的变态递归优化方法 - 索引收敛(skip scan)扫描》
201611/20161128_01.md  《时序数据合并场景加速分析和实现 - 复合索引,窗口分组查询加速,变态递归加速》
201608/20160815_04.md  《PostgreSQL雕虫小技cte 递归查询,分组TOP性能提升44倍》
201607/20160725_01.md  《PostgreSQL 使用递归SQL 找出数据库对象之间的依赖关系 - 例如视图依赖》
201607/20160723_01.md  《PostgreSQL 递归死循环案例及解法》
201604/20160405_01.md  《PostgreSQL 递归查询一例 - 资金累加链》
201512/20151221_02.md  《PostgreSQL Oracle 兼容性之 - WITH 递归 ( connect by )》
201210/20121009_01.md  《递归优化CASE - group by & distinct tuning case : use WITH RECURSIVE and min() function》
201209/20120914_01.md  《递归优化CASE - performance tuning case :use cursor\trigger\recursive replace (group by and order by) REDUCE needed blockes scan》
201105/20110527_01.md  《PostgreSQL 树状数据存储与查询(非递归) - Use ltree extension deal tree-like data type》
相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
6月前
【每日一题Day287】LC24 两两交换链表中的节点 | 模拟 递归
【每日一题Day287】LC24 两两交换链表中的节点 | 模拟 递归
45 0
|
3月前
|
关系型数据库 MySQL
mysql 使用CTE写法
mysql 使用CTE写法
|
6月前
|
算法
算法系列--递归(一)--与链表有关(上)
算法系列--递归(一)--与链表有关
68 0
|
3月前
|
SQL 数据采集 关系型数据库
在 MySQL 中使用 CTE
【8月更文挑战第11天】
182 0
在 MySQL 中使用 CTE
|
5月前
|
SQL 算法 数据可视化
LeetCode题目92:反转链表ll 【python 递归与迭代方法全解析】
LeetCode题目92:反转链表ll 【python 递归与迭代方法全解析】
|
6月前
|
SQL 人工智能 Oracle
PostgreSQL 递归查询(含层级和结构)
PostgreSQL 递归查询(含层级和结构)
|
6月前
|
算法
合并有序链&&反转链表(递归版)
合并有序链&&反转链表(递归版)
|
6月前
|
算法
算法系列--递归(一)--与链表有关(下)
算法系列--递归(一)--与链表有关(下)
36 0
|
6月前
|
存储 算法 C语言
【数据结构与算法】【约瑟夫问题】还在用递归?教你用链表秒杀约瑟夫
【数据结构与算法】【约瑟夫问题】还在用递归?教你用链表秒杀约瑟夫
|
6月前
|
算法
每日一题——排序链表(递归 + 迭代)
每日一题——排序链表(递归 + 迭代)
下一篇
无影云桌面