带你体验云原生场景下 Serverless 应用编程模型

简介: 阿里云 Knative 基于 ASK 之上,在完全兼容社区 Knaitve 的同时对 FC、ECI 工作负载进行统一应用编排,支持事件驱动、自动弹性,为您提供统一的 Serverless 应用编程模型。

背景

阿里云 Serverless Kubernetes(ASK) 是阿里云推出的无服务器 Kubernetes 容器服务,底层基于 ECI(Elastic Container Instance)让您无需购买 ECS 节点就能直接创建安全隔离的容器应用。 ASK 通过了 Kubernetes 的一致性测试,给您提供了完全兼容社区 Kubernetes 的使用体验。

Knative 是一款基于 Kubernetes 的开源 Serverless 应用编排框架,其目标是制定云原生、跨平台的Serverless应用编排标准。阿里云 Knative 基于 ASK 之上,在完全兼容社区 Knaitve 的同时对 FC、ECI 工作负载进行统一应用编排,支持事件驱动、自动弹性,为您提供统一的 Serverless 应用编程模型。

架构

接下来我们通过一个弹幕服务 demo 进行介绍。该 demo 主要包括 HomePage、事件驱动、消息处理这 3 部分。

HomePage 主要用于发送和接收弹幕。事件驱动用来接收事件,并进行事件过滤、流转。消息处理,用于处理弹幕消息。其中 HomePage、消息处理通过 Knative Serving 部署分别到 FC、ECI,事件驱动通过 Knative Eventing 部署到ECI。


弹幕服务 demo 主要流程如图,用户通过前端发送弹幕消息到 HomePage,HomePage 接着将弹幕发送到 Kafka,事件驱动接收弹幕消息,然后路由到消息处理进行加工,待弹幕加工完之后,将弹幕结果发送到表格存储中,最后前端获取弹幕结果在页面展示。


接下来我们开始部署该弹幕服务 demo, 操作包括以下内容:

首先部署消息处理,然后部署事件驱动,接着部署 HomePage,待部署完成之后进行弹幕服务访问

第一步:部署消息处理

该服务用于接收事件驱动发送的弹幕请求,并根据请求数进行自动扩缩容,待弹幕消息处理完成之后将结果发送到表格存储。部署之前,我们先确认当前无工作负载,以便观察部署之后的结果。

  • 选择 ask 集群
  • 在集群管理页左侧导航栏中,选择工作负载 > 无状态。选择 default命名空间,确认当前无工作负载

接着通过 Knative 把弹消息处理部署到 ECI 类型工作负载。这里我们通过yaml的方式进行部署,yaml内容如下:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: test-barrage-process
spec:
  template:
    metadata:
      annotations:
        autoscaling.knative.dev/maxScale: "100"
        autoscaling.knative.dev/minScale: "0"
        k8s.aliyun.com/eci-image-snapshot-id: imc-uf636kjjx8xr4e75npex
      labels:
        danmu.role: "manager"
    spec:
      containerConcurrency: 2
      serviceAccountName: barrage-install-sa
      containers:
        - args:
            - /manager
          env:
            - name: OTS_ENDPOINT
              value: https://barrage.cn-hangzhou.tablestore.aliyuncs.com
            - name: TABLE_NAME
              value: barrage
            - name: OTS_INSTANCENAME
              value: barrage
            - name: OTS_KEYID
              value: xxx
            - name: OTS_SECRET
              value: xxx
            - name: POD_NAME
              valueFrom:
                fieldRef:
                  fieldPath: metadata.name
            - name: ROLE
              value: manager
            - name: POD_NAMESPACE
              valueFrom:
                fieldRef:
                  fieldPath: metadata.namespace
            - name: TRACE_NAME
              value: "process"
            - name: PARENT_SPAN
              value: "barrage-sender"
            - name: SUB_SPAN
              value: "process"
            - name: TRACING
              value: "http://tracing-analysis-dc-sh.aliyuncs.com/adapt_g2it2kg78n@5cf06035aec2eb9_g2it2kg78n@53df7ad2afe8301/api/traces"
          image: registry-vpc.cn-shanghai.aliyuncs.com/knative-sample/barrage-manager:forrester-yuanyi_4cd77c84-20210618215458
          name: user-container
          ports:
            - containerPort: 8000
              name: http1

主要参数说明:

  • minScale和maxScale:表示服务配置的最小和最大Pod数量
  • containerConcurrency:表示配置的Pod最大请求并发数
  • OTS_ENDPOINT:表示配置的表格存储访问地址
  • TRACING:表示配置的调用连地址

那么接下来我们部署该服务。

  • 在集群管理页左侧导航栏中,选择应用 > Knative
  • 服务管理页签右上角,单击【使用模版创建】。选择default 命名空间,将上面的 yaml 内容粘贴到模版,点击创建。


第二步:部署事件驱动

事件驱动用于接收事件并进行事件流过滤、流转。这里我们使用 Kafka 事件源作为事件驱动,用于从 Kafka 接收弹幕消息,然后把弹幕路由到消息处理。我们通过yaml的方式进行部署, yaml内容如下:

apiVersion: sources.knative.dev/v1alpha1
kind: KafkaSource
metadata:
  annotations:
    k8s.aliyun.com/req-timeout: "60"
    k8s.aliyun.com/retry-count: "5"
    k8s.aliyun.com/retry-interval: "2"
  name: barrage
  namespace: default
spec:
  bootstrapServers: 192.168.42.205:9092,192.168.42.204:9092,192.168.42.203:9092
  consumerGroup: barrage-info-consumer
  sink:
    ref:
      apiVersion: serving.knative.dev/v1
      kind: Service
      name: test-barrage-process
      namespace: default
  topics: barrage-info

主要参数说明:

  • kafka配置包括:kafka服务地址 ,弹幕消息 topics 以及消费组 consumerGroup
  • 路由的目标消息处理:test-barrage-process


那么接下来我们部署该服务。

  • 在集群管理页左侧导航栏中,选择应用 > Knative
  • 服务管理页签右上角,单击【使用模版创建】。选择default 命名空间,将上面的 yaml 内容粘贴到模版,点击创建。

以上消息处理和事件驱动都已部署完成,我们来验证一下。

(在集群管理页左侧导航栏中,选择工作负载 > 容器组)

在容器组中,可以看到消息处理以及 Kafka 事件源实例都已 running


第三步:部署HomePage

该服务用于接收前端弹幕消息,并将弹幕消息发送到 Kafka,同时从表格存储中接收弹幕结果。这里通过 Knative 函数方式部署之后,会自动在FC中创建服务、函数、自定义域名。操作之前我们先确认FC中无弹幕服务、函数以及自定义域名。

  • 登录FC控制台
  • 在顶部菜单栏,选择地域(上海)。

打开服务及函数页面,确认无弹幕服务及函数

  • 在左侧导航栏中,单击自定义域名,确认无域名信息。

打开自定义域名页面,确认无自定义域名

接下来我们通过 Knative 把HomePage部署到FC类型工作负载。这里我们通过yaml的方式进行部署, yaml内容如下:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: demo-barrage
  annotations:
    workload.serving.knative.aliyun.com/class: "fc"
spec:
  template:
    metadata:
      annotations:
        fc.revision.serving.knative.aliyun.com/code-space: "image"
        fc.revision.serving.knative.aliyun.com/role-arm: "acs:ram::xxxx:role/knative-fc"
        fc.revision.serving.knative.aliyun.com/domain: '{"domain":"barrage.demo.knative.top","path":"/*"}'
    spec:
      containers:
        - image: registry.cn-shanghai.aliyuncs.com/knative-sample/barrage-main:forrester-yuanyi_4cd77c84-20210618214527
          env:
            - name: OTS_ENDPOINT
              value: https://barrage.cn-hangzhou.ots.aliyuncs.com
            - name: TABLE_NAME
              value: barrage
            - name: OTS_INSTANCENAME
              value: barrage
            - name: OTS_KEYID
              value: xxx
            - name: OTS_SECRET
              value: xxx
            - name: KAFKA_SERVER
              value: "106.15.11.179:9093,47.100.131.71:9093,47.102.44.91:9093"
            - name: KAFKA_USER
              value: "alikafka_pre-cn-xxx"
            - name: KAFKA_PWD
              value: "xxx"
            - name: KAFKA_TOPIC
              value: "barrage-info"
            - name: TRACING
              value: "http://tracing-analysis-dc-sh.aliyuncs.com/adapt_g2it2kg78n@5cf06035aec2eb9_g2it2kg78n@53df7ad2afe8301/api/traces"
            - name: TRACE_NAME1
              value: "sender"
            - name: TRACE_NAME2
              value: "receiver"
            - name: TRACE_NAME3
              value: "result"
            - name: PARENT_SPAN
              value: "barrage-sender"
            - name: SUB_SPAN1
              value: "sender"
            - name: SUB_SPAN2
              value: "result"

主要参数说明:

  • fc 相关参数配置包括: 部署fc类型的工作负载、通过镜像方式部署,并指定访问域名为: barrage.demo.knative.top
  • 配置表格存储访问地址: OTS_ENDPOINT
  • kafka 相关参数配置:kafka服务地址、弹幕消息 topic
  • 调用连地址配置:TRACING

那么我们来部署该服务。

  • 登录容器服务管理控制台
  • 在集群管理页左侧导航栏中,选择应用 > Knative
  • 服务管理页签右上角,单击【使用模版创建】。选择default 命名空间,将上面的 yaml 内容粘贴到模版,点击创建。

部署完成之后,我们在函数计算控制台验证一下。

  • 登录函数计算控制台
  • 在顶部菜单栏,选择地域。
  • 在左侧导航栏中,单击服务及函数,选择可以看到弹幕服务已经部署完成

打开服务及函数页面,可以看到HomePage已经部署完成。

  • 在左侧导航栏中,单击自定义域名。

打开自定义域名页面可以看到自动创建出来了我们配置的域名。

第四步:服务访问

以上服务都已部署完成,接着我们通过自定义域名进行服务访问。http://barrage.demo.knative.top

接下来我们发送弹幕,这里可以自定义设置需要发送的弹幕消息,并发数以及持续时间。这里我们使用默认配置进行发送。

设置Message、Concurrency以及Duration,点击【Send】

我们可以看到不断有弹幕消息展示出来。

小结

阿里云 Knative 在 Serverless Kubernetes 之上,提供了面向容器+函数的统一编程模型,给你带来统一的Serverless 应用编程模型。欢迎有兴趣的同学一起交流。

image.png


相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
目录
相关文章
|
4月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
608 30
|
5月前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
616 12
|
10月前
|
SQL 分布式计算 Serverless
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。
1150 56
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
|
10月前
|
人工智能 开发框架 安全
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
858 30
|
8月前
|
存储 编解码 Serverless
Serverless架构下的OSS应用:函数计算FC自动处理图片/视频转码(演示水印添加+缩略图生成流水线)
本文介绍基于阿里云函数计算(FC)和对象存储(OSS)构建Serverless媒体处理流水线,解决传统方案资源利用率低、运维复杂、成本高等问题。通过事件驱动机制实现图片水印添加、多规格缩略图生成及视频转码优化,支持毫秒级弹性伸缩与精确计费,提升处理效率并降低成本,适用于高并发媒体处理场景。
584 0
|
5月前
|
人工智能 运维 安全
聚焦 AI 应用基础设施,云栖大会 Serverless AI 全回顾
2025 年 9 月 26 日,为期三天的云栖大会在杭州云栖小镇圆满闭幕。随着大模型技术的飞速发展,我们正从云原生时代迈向一个全新的 AI 原生应用时代。为了解决企业在 AI 应用落地中面临的高成本、高复杂度和高风险等核心挑战,阿里云基于函数计算 FC 发布一系列重磅服务。本文将对云栖大会期间 Serverless+AI 基础设施相关内容进行全面总结。
|
5月前
|
人工智能 Kubernetes 安全
重塑云上 AI 应用“运行时”,函数计算进化之路
回顾历史,电网的修建,深刻地改变了世界的经济地理和创新格局。今天,一个 AI 原生的云端运行时的进化,其意义也远不止于技术本身。这是一次设计哲学的升华:从“让应用适应平台”到“让平台主动理解和适应智能应用”的转变。当一个强大、易用、经济且安全的 AI 运行时成为像水电一样的基础设施时,它将极大地降低创新的门槛。一个独立的开发者、一个小型创业团队,将有能力去创造和部署世界级的 AI 应用。这才是技术平权的真谛,是激发全社会创新潜能的关键。
|
10月前
|
人工智能 运维 Cloud Native
Argo Workflows at KubeCon Europe 2025: 多元场景的云原生任务编排
Argo Workflow在KubeCon Europe 2025展示了其在AI/ML/HPC任务、事件驱动、平台工程、批量数据处理、混沌测试等多元场景的云原生任务编排能力。
|
10月前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
544 12
|
10月前
|
人工智能 开发框架 运维
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
Serverless MCP 运行时业界首发,函数计算支持阿里云百炼 MCP 服务!阿里云百炼发布业界首个全生命周期 MCP 服务,无需用户管理资源、开发部署、工程运维等工作,5 分钟即可快速搭建一个连接 MCP 服务的 Agent(智能体)。作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力。
 Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速

热门文章

最新文章

相关产品

  • 函数计算