带你体验云原生场景下 Serverless 应用编程模型

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
函数计算FC,每月15万CU 3个月
简介: 阿里云 Knative 基于 ASK 之上,在完全兼容社区 Knaitve 的同时对 FC、ECI 工作负载进行统一应用编排,支持事件驱动、自动弹性,为您提供统一的 Serverless 应用编程模型。

背景

阿里云 Serverless Kubernetes(ASK) 是阿里云推出的无服务器 Kubernetes 容器服务,底层基于 ECI(Elastic Container Instance)让您无需购买 ECS 节点就能直接创建安全隔离的容器应用。 ASK 通过了 Kubernetes 的一致性测试,给您提供了完全兼容社区 Kubernetes 的使用体验。

Knative 是一款基于 Kubernetes 的开源 Serverless 应用编排框架,其目标是制定云原生、跨平台的Serverless应用编排标准。阿里云 Knative 基于 ASK 之上,在完全兼容社区 Knaitve 的同时对 FC、ECI 工作负载进行统一应用编排,支持事件驱动、自动弹性,为您提供统一的 Serverless 应用编程模型。

架构

接下来我们通过一个弹幕服务 demo 进行介绍。该 demo 主要包括 HomePage、事件驱动、消息处理这 3 部分。

HomePage 主要用于发送和接收弹幕。事件驱动用来接收事件,并进行事件过滤、流转。消息处理,用于处理弹幕消息。其中 HomePage、消息处理通过 Knative Serving 部署分别到 FC、ECI,事件驱动通过 Knative Eventing 部署到ECI。


弹幕服务 demo 主要流程如图,用户通过前端发送弹幕消息到 HomePage,HomePage 接着将弹幕发送到 Kafka,事件驱动接收弹幕消息,然后路由到消息处理进行加工,待弹幕加工完之后,将弹幕结果发送到表格存储中,最后前端获取弹幕结果在页面展示。


接下来我们开始部署该弹幕服务 demo, 操作包括以下内容:

首先部署消息处理,然后部署事件驱动,接着部署 HomePage,待部署完成之后进行弹幕服务访问

第一步:部署消息处理

该服务用于接收事件驱动发送的弹幕请求,并根据请求数进行自动扩缩容,待弹幕消息处理完成之后将结果发送到表格存储。部署之前,我们先确认当前无工作负载,以便观察部署之后的结果。

  • 选择 ask 集群
  • 在集群管理页左侧导航栏中,选择工作负载 > 无状态。选择 default命名空间,确认当前无工作负载

接着通过 Knative 把弹消息处理部署到 ECI 类型工作负载。这里我们通过yaml的方式进行部署,yaml内容如下:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: test-barrage-process
spec:
  template:
    metadata:
      annotations:
        autoscaling.knative.dev/maxScale: "100"
        autoscaling.knative.dev/minScale: "0"
        k8s.aliyun.com/eci-image-snapshot-id: imc-uf636kjjx8xr4e75npex
      labels:
        danmu.role: "manager"
    spec:
      containerConcurrency: 2
      serviceAccountName: barrage-install-sa
      containers:
        - args:
            - /manager
          env:
            - name: OTS_ENDPOINT
              value: https://barrage.cn-hangzhou.tablestore.aliyuncs.com
            - name: TABLE_NAME
              value: barrage
            - name: OTS_INSTANCENAME
              value: barrage
            - name: OTS_KEYID
              value: xxx
            - name: OTS_SECRET
              value: xxx
            - name: POD_NAME
              valueFrom:
                fieldRef:
                  fieldPath: metadata.name
            - name: ROLE
              value: manager
            - name: POD_NAMESPACE
              valueFrom:
                fieldRef:
                  fieldPath: metadata.namespace
            - name: TRACE_NAME
              value: "process"
            - name: PARENT_SPAN
              value: "barrage-sender"
            - name: SUB_SPAN
              value: "process"
            - name: TRACING
              value: "http://tracing-analysis-dc-sh.aliyuncs.com/adapt_g2it2kg78n@5cf06035aec2eb9_g2it2kg78n@53df7ad2afe8301/api/traces"
          image: registry-vpc.cn-shanghai.aliyuncs.com/knative-sample/barrage-manager:forrester-yuanyi_4cd77c84-20210618215458
          name: user-container
          ports:
            - containerPort: 8000
              name: http1

主要参数说明:

  • minScale和maxScale:表示服务配置的最小和最大Pod数量
  • containerConcurrency:表示配置的Pod最大请求并发数
  • OTS_ENDPOINT:表示配置的表格存储访问地址
  • TRACING:表示配置的调用连地址

那么接下来我们部署该服务。

  • 在集群管理页左侧导航栏中,选择应用 > Knative
  • 服务管理页签右上角,单击【使用模版创建】。选择default 命名空间,将上面的 yaml 内容粘贴到模版,点击创建。


第二步:部署事件驱动

事件驱动用于接收事件并进行事件流过滤、流转。这里我们使用 Kafka 事件源作为事件驱动,用于从 Kafka 接收弹幕消息,然后把弹幕路由到消息处理。我们通过yaml的方式进行部署, yaml内容如下:

apiVersion: sources.knative.dev/v1alpha1
kind: KafkaSource
metadata:
  annotations:
    k8s.aliyun.com/req-timeout: "60"
    k8s.aliyun.com/retry-count: "5"
    k8s.aliyun.com/retry-interval: "2"
  name: barrage
  namespace: default
spec:
  bootstrapServers: 192.168.42.205:9092,192.168.42.204:9092,192.168.42.203:9092
  consumerGroup: barrage-info-consumer
  sink:
    ref:
      apiVersion: serving.knative.dev/v1
      kind: Service
      name: test-barrage-process
      namespace: default
  topics: barrage-info

主要参数说明:

  • kafka配置包括:kafka服务地址 ,弹幕消息 topics 以及消费组 consumerGroup
  • 路由的目标消息处理:test-barrage-process


那么接下来我们部署该服务。

  • 在集群管理页左侧导航栏中,选择应用 > Knative
  • 服务管理页签右上角,单击【使用模版创建】。选择default 命名空间,将上面的 yaml 内容粘贴到模版,点击创建。

以上消息处理和事件驱动都已部署完成,我们来验证一下。

(在集群管理页左侧导航栏中,选择工作负载 > 容器组)

在容器组中,可以看到消息处理以及 Kafka 事件源实例都已 running


第三步:部署HomePage

该服务用于接收前端弹幕消息,并将弹幕消息发送到 Kafka,同时从表格存储中接收弹幕结果。这里通过 Knative 函数方式部署之后,会自动在FC中创建服务、函数、自定义域名。操作之前我们先确认FC中无弹幕服务、函数以及自定义域名。

  • 登录FC控制台
  • 在顶部菜单栏,选择地域(上海)。

打开服务及函数页面,确认无弹幕服务及函数

  • 在左侧导航栏中,单击自定义域名,确认无域名信息。

打开自定义域名页面,确认无自定义域名

接下来我们通过 Knative 把HomePage部署到FC类型工作负载。这里我们通过yaml的方式进行部署, yaml内容如下:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: demo-barrage
  annotations:
    workload.serving.knative.aliyun.com/class: "fc"
spec:
  template:
    metadata:
      annotations:
        fc.revision.serving.knative.aliyun.com/code-space: "image"
        fc.revision.serving.knative.aliyun.com/role-arm: "acs:ram::xxxx:role/knative-fc"
        fc.revision.serving.knative.aliyun.com/domain: '{"domain":"barrage.demo.knative.top","path":"/*"}'
    spec:
      containers:
        - image: registry.cn-shanghai.aliyuncs.com/knative-sample/barrage-main:forrester-yuanyi_4cd77c84-20210618214527
          env:
            - name: OTS_ENDPOINT
              value: https://barrage.cn-hangzhou.ots.aliyuncs.com
            - name: TABLE_NAME
              value: barrage
            - name: OTS_INSTANCENAME
              value: barrage
            - name: OTS_KEYID
              value: xxx
            - name: OTS_SECRET
              value: xxx
            - name: KAFKA_SERVER
              value: "106.15.11.179:9093,47.100.131.71:9093,47.102.44.91:9093"
            - name: KAFKA_USER
              value: "alikafka_pre-cn-xxx"
            - name: KAFKA_PWD
              value: "xxx"
            - name: KAFKA_TOPIC
              value: "barrage-info"
            - name: TRACING
              value: "http://tracing-analysis-dc-sh.aliyuncs.com/adapt_g2it2kg78n@5cf06035aec2eb9_g2it2kg78n@53df7ad2afe8301/api/traces"
            - name: TRACE_NAME1
              value: "sender"
            - name: TRACE_NAME2
              value: "receiver"
            - name: TRACE_NAME3
              value: "result"
            - name: PARENT_SPAN
              value: "barrage-sender"
            - name: SUB_SPAN1
              value: "sender"
            - name: SUB_SPAN2
              value: "result"

主要参数说明:

  • fc 相关参数配置包括: 部署fc类型的工作负载、通过镜像方式部署,并指定访问域名为: barrage.demo.knative.top
  • 配置表格存储访问地址: OTS_ENDPOINT
  • kafka 相关参数配置:kafka服务地址、弹幕消息 topic
  • 调用连地址配置:TRACING

那么我们来部署该服务。

  • 登录容器服务管理控制台
  • 在集群管理页左侧导航栏中,选择应用 > Knative
  • 服务管理页签右上角,单击【使用模版创建】。选择default 命名空间,将上面的 yaml 内容粘贴到模版,点击创建。

部署完成之后,我们在函数计算控制台验证一下。

  • 登录函数计算控制台
  • 在顶部菜单栏,选择地域。
  • 在左侧导航栏中,单击服务及函数,选择可以看到弹幕服务已经部署完成

打开服务及函数页面,可以看到HomePage已经部署完成。

  • 在左侧导航栏中,单击自定义域名。

打开自定义域名页面可以看到自动创建出来了我们配置的域名。

第四步:服务访问

以上服务都已部署完成,接着我们通过自定义域名进行服务访问。http://barrage.demo.knative.top

接下来我们发送弹幕,这里可以自定义设置需要发送的弹幕消息,并发数以及持续时间。这里我们使用默认配置进行发送。

设置Message、Concurrency以及Duration,点击【Send】

我们可以看到不断有弹幕消息展示出来。

小结

阿里云 Knative 在 Serverless Kubernetes 之上,提供了面向容器+函数的统一编程模型,给你带来统一的Serverless 应用编程模型。欢迎有兴趣的同学一起交流。

image.png


相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
打赏
0
0
0
0
54112
分享
相关文章
云原生技术在现代企业中的应用与实践####
本文深入探讨了云原生技术的核心概念及其在现代企业IT架构转型中的关键作用,通过具体案例分析展示了云原生如何促进企业的敏捷开发、高效运维及成本优化。不同于传统摘要仅概述内容,本部分旨在激发读者对云原生领域的兴趣,强调其在加速数字化转型过程中的不可或缺性,为后续详细论述奠定基础。 ####
Argo Workflows at KubeCon Europe 2025: 多元场景的云原生任务编排
Argo Workflow在KubeCon Europe 2025展示了其在AI/ML/HPC任务、事件驱动、平台工程、批量数据处理、混沌测试等多元场景的云原生任务编排能力。
DeepSeek 模型快速体验,魔搭+函数计算一键部署模型上云
DeepSeek模型近期备受关注,其开源版本DeepSeek-V3和DeepSeek-R1在多个基准测试中表现出色,性能比肩OpenAI顶尖模型。为降低本地部署门槛,Modelscope社区推出DeepSeek-R1-Distill-Qwen模型的一键部署服务,支持函数计算FC平台的闲置GPU实例,大幅降低成本。用户可选择不同参数量的小模型进行快速部署和推理,体验DeepSeek的强大性能。
DeepSeek 模型快速体验,魔搭+函数计算一键部署模型上云
阿里云 EMR Serverless Spark 在微财机器学习场景下的应用
面对机器学习场景下的训练瓶颈,微财选择基于阿里云 EMR Serverless Spark 建立数据平台。通过 EMR Serverless Spark,微财突破了单机训练使用的数据规模瓶颈,大幅提升了训练效率,解决了存算分离架构下 Shuffle 稳定性和性能困扰,为智能风控等业务提供了强有力的技术支撑。
271 15
DeepSeek 快速体验,魔搭+函数计算一键部署模型上云
对于期待第一时间在本地进行使用的用户来说,尽管 DeepSeek 提供了从 1.5B 到 70B 参数的多尺寸蒸馏模型,但本地部署仍需要一定的技术门槛。对于资源有限的用户进一步使用仍有难点。为了让更多开发者第一时间体验 DeepSeek 模型的魅力,Modelscope 社区 DeepSeek-R1-Distill-Qwen 模型现已支持一键部署(SwingDeploy)上函数计算 FC 服务,欢迎开发者立即体验。
417 13
AI 场景下,函数计算 GPU 实例模型存储最佳实践
AI 场景下,函数计算 GPU 实例模型存储最佳实践
100 0
AI 场景下,函数计算 GPU 实例模型存储最佳实践
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
云原生技术:构建现代应用的基石
在数字化转型的浪潮中,云原生技术如同一艘承载梦想的航船,引领企业驶向创新与效率的新海域。本文将深入探索云原生技术的核心价值,揭示其如何重塑软件开发、部署和运维模式,同时通过一个简易代码示例,展现云原生应用的构建过程,让读者领略到云原生技术的魅力所在。
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。
327 56
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用

相关产品

  • 函数计算
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等

    登录插画

    登录以查看您的控制台资源

    管理云资源
    状态一览
    快捷访问