K3S环境下接入Prometheus,grafana,等监控套件

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介: 因为常规的监控都是用K8S做的,而K3S上的监控方案少之又少,如果直接用rancher上的prometheus监控,会消耗至少2G的内存,于是我们就自己做了K3S和pg数据库的监控,并且通过我们自己做的监控,可以减少一些不必要的性能开销。主要监控容器资源消耗,宿主机资源消耗,pg数据库资源消耗

背景

因为常规的监控都是用K8S做的,而K3S上的监控方案少之又少,如果直接用rancher上的prometheus监控,会消耗至少2G的内存,于是我们就自己做了K3S和pg数据库的监控,并且通过我们自己做的监控,可以减少一些不必要的性能开销。主要监控容器资源消耗,宿主机资源消耗,pg数据库资源消耗

argocd1.png

这个是资源使用情况,大约会用掉600M内存和100MCPU

user@user:/$ kubectl top pod -n kube-ops
NAME                                            CPU(cores)   MEMORY(bytes)
grafana-0                                       1m           47Mi
kube-state-metrics-594fb7bc84-5mg6g             3m           10Mi
node-exportor-prometheus-node-exporter-sznls    31m          8Mi
node-exportor-prometheus-node-exporter-tx7rm    13m          7Mi
prometheus-0                                    46m          565Mi
prometheus-postgres-exporter-6c858f47d4-dj9hj   13m          6Mi
 

prometheus监控组件参考helm chart

https://github.com/prometheus-community/helm-charts/tree/main/charts

我魔改的github连接

https://github.com/lizhenwei/k3s-prometheus


Prometheus的安装

1.创建一个命名空间kube-ops,把监控用的东西都放在这个命名里面。

2.使用我魔改的chart进行安装,默认版本是v2.26.0,默认启用上图提到的

cadvisor,kube_state_metrics,node_exportor,postgres_exporter

 

kubectl create ns kube-ops

helm install -n kube-ops prometheus lizhenwei-prometheus


如果要关闭其中的某个监控项,安装时参考添加变量 –set node_exportor.enable=false,

prometheus的数据会用默认的storageClass生成PVC,如果没有默认的,参考手动设置nfs存储 –set persistence.storageClass=nfs-client

安装成功后,因为我是nodeport暴露出来的,所以可以通过浏览器去检查一下配置,例如这里我们暴露出来是32331端口可以访问,例如:

$ kubectl get svc -n kube-ops
NAME                           TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)             AGE
prometheus                     NodePort    10.43.178.128   <none>        9090:32331/TCP      2d4h


访问http://master机器IP:32331/targets,可以看到prometheus自己已经是成功起来了,我们也可以去http://master机器IP:32331/config页面看看配置项是否都正确

Image-7-2.png

要启用或停用某些监控功能,可以修改lizhenwei-prometheus/valuse.yaml里的配置,修改成true或false


kube-state-metrics的安装

kube-state-metrics是用来收集k8s集群的CPU,内存等信息的收集器,这里我用的是v1.9.7版本。

使用我github上的helm进行安装:

helm install -n kube-ops prometheus lizhenwei-kube-state-metrics

要想验证部署kube-state-metrics之后,是否能成功使用,我们可以看prometheus的target页面是不是显示kube-state-metrics(X/X up) x为机器节点数量。

然后我们去graph页面看看,http://master机器IP:32331/graph。可以参考官网给的promql文档,输入几个语句试试

 

PromQL参考链接

https://github.com/kubernetes/kube-state-metrics/tree/master/docs

例如输入kube_configmap_info,点击execute会返回一些结果,如下图

Image-8-1.png


K3S自带的CADVISOR

K3S自带kubelet ,而cadvisor已经集成在kubelet里了,prometheus可以通过配置找到本地安装的cadvisor,例如下列代码:

- job_name: 'cadvisor'
  scheme: https
  tls_config:
    ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
  bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
  kubernetes_sd_configs:
  - role: node
  relabel_configs:
  - action: labelmap
    regex: __meta_kubernetes_node_label_(.+)
  - target_label: __address__
    replacement: kubernetes.default.svc:443
  - source_labels: [__meta_kubernetes_node_name]
    regex: (.+)
    target_label: __metrics_path__
    replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor


接入prometheus的时候,可以根据以下链接,查看PromQL语句

 

PromQL参考链接

https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md


node-exportor的安装

这个使用官方网站给的一个公共库就可以了

helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update
helm install node-exportor prometheus-community/prometheus-node-exporter
 

grafana参考链接https://grafana.com/grafana/dashboards/1860


postgres-exportor

下载代码https://github.com/prometheus-community/helm-charts/tree/main/charts/prometheus-postgres-exporter 到机器上

修改valuse.yaml里的queries里的参数,在最后面加上

pg_stat_activity:
      query: |
        SELECT
          datname,
          SUM(EXTRACT(EPOCH FROM (CURRENT_TIMESTAMP - state_change))::bigint)::float AS process_idle_seconds_sum,
          COUNT(*) AS process_idle_seconds_count
        FROM pg_stat_activity
        WHERE state = 'idle'
        GROUP BY datname
      metrics:
        - datname:
            usage: "LABEL"
            description: "datname"
        - process_idle_seconds:
            usage: "COUNTER"
            description: "Idle time of server processes"
        - process_idle_seconds_sum:
            usage: "GUAGE"
            description: "sum of Idle time of server processes"

在valuse.yaml文件的config.datasource部分添加我们的postgres超管用户信息。

helm安装语句

helm install -n kube-ops prometheus-postgres-exporter prometheus-postgres-exporter


Grafana导入dashboard

可以参考这位大神的github链接https://github.com/starsliao/Prometheus


页面截图

image2021-4-16_11-11-8.png

image2021-4-16_11-11-29.png

image2021-4-16_11-12-5.png

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
20天前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
108 3
|
11天前
|
Prometheus 监控 Cloud Native
在 HBase 集群中,Prometheus 通常监控哪些类型的性能指标?
在 HBase 集群中,Prometheus 监控关注的核心指标包括 Master 和 RegionServer 的进程存在性、RPC 请求数、JVM 内存使用率、磁盘和网络错误、延迟和吞吐量、资源利用率及 JVM 使用信息。通过 Grafana 可视化和告警规则,帮助管理员实时监控集群性能和健康状况。
|
22天前
|
Prometheus 监控 Cloud Native
基于Docker安装Grafana和Prometheus
Grafana 是一款用 Go 语言开发的开源数据可视化工具,支持数据监控和统计,并具备告警功能。通过 Docker 部署 Grafana 和 Prometheus,可实现系统数据的采集、展示和告警。默认登录用户名和密码均为 admin。配置 Prometheus 数据源后,可导入主机监控模板(ID 8919)进行数据展示。
59 2
|
20天前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第27天】在智能运维中,Prometheus和Grafana的组合已成为监控和告警体系的事实标准。Prometheus负责数据收集和存储,支持灵活的查询语言PromQL;Grafana提供数据的可视化展示和告警功能。本文介绍如何配置Prometheus监控目标、Grafana数据源及告警规则,帮助运维团队实时监控系统状态,确保稳定性和可靠性。
95 0
|
2月前
|
Prometheus 监控 Cloud Native
介绍如何使用Prometheus进行监控
介绍如何使用Prometheus进行监控
207 3
|
2月前
|
Prometheus Kubernetes 监控
prometheus学习笔记之集群内服务发现环境准备
本文介绍了在Kubernetes集群中部署Prometheus监控系统的详细步骤。首先创建用于监控的命名空间,并配置Docker以顺利下载镜像。接着,通过DaemonSet方式在集群中部署Node Exporter,确保每个节点上的指标都能被收集。然后,安装并配置NFS存储类别,以便为Prometheus提供持久化存储。最后,详细展示了如何在Kubernetes中部署Prometheus服务器,包括创建相关的配置文件、部署服务、设置角色权限以及暴露服务等
|
3月前
|
Prometheus 监控 Cloud Native
【监控】prometheus传统环境监控告警常用配置
【监控】prometheus传统环境监控告警常用配置
【监控】prometheus传统环境监控告警常用配置
|
2月前
|
Prometheus 监控 Cloud Native
docker安装prometheus+Granfan并监控容器
【9月更文挑战第14天】本文介绍了在Docker中安装Prometheus与Grafana并监控容器的步骤,包括创建配置文件、运行Prometheus与Grafana容器,以及在Grafana中配置数据源和创建监控仪表盘,展示了如何通过Prometheus抓取数据并利用Grafana展示容器的CPU使用率等关键指标。
|
3月前
|
存储 Prometheus 监控
Grafana 与 Prometheus 集成:打造高效监控系统
【8月更文第29天】在现代软件开发和运维领域,监控系统已成为不可或缺的一部分。Prometheus 和 Grafana 作为两个非常流行且互补的开源工具,可以协同工作来构建强大的实时监控解决方案。Prometheus 负责收集和存储时间序列数据,而 Grafana 则提供直观的数据可视化功能。本文将详细介绍如何集成这两个工具,构建一个高效、灵活的监控系统。
411 1
|
3月前
|
Prometheus 监控 Cloud Native
使用Prometheus搞定微服务监控
使用Prometheus搞定微服务监控
使用Prometheus搞定微服务监控
下一篇
无影云桌面