Pandas之四缺失数据处理

简介: pandas在处理缺失数据的几种方法,删除、填充和判断

Pandas之四缺失数据处理

在实际的数据处理过程当中,不可避免地会遇到有部分数据缺失。比如在分析股票行情数据时,有部分股票有时会停牌就会出现行情数据缺失的情况。

一般在pandas中将缺失值以np.nan来表示,其好处是会在计算时忽略,同时其类型是float,不影响总体数据计算。数据分析时就要处理这些缺失值,pandas提供了缺失数据处理方法,包括删除缺失值、缺失值填充、缺失值判断等。

首先在前文数据上,生成新的dataframe:

在这里插入图片描述

删除缺失值

使用.dropna删除缺失值,可以针对整个dataframe,也可以针对某列或某行

1. 从整个df删除缺失值

常用参数how:any指只要某行存在缺失值,即将该行删除;all指某行全部都是缺失值才删除。

如下图,指定为all时,只删除了2021-09-07行的数据

在这里插入图片描述

2. 从某列删除缺失值

将E列的缺失数据删除掉

在这里插入图片描述

3. 从某行删除缺失值

2021-09-03的缺失数据删除掉

在这里插入图片描述

缺失值填充

使用.fillna为缺失值填充数据,可以为dataframe所有缺失值填充数据,也可以为某行或某列填充数据

1. 为df所有缺失值填充数据

在这里插入图片描述

2. 为某列填充缺失值

选取dataframe中的E列,将其中的缺失值填充为9

在这里插入图片描述

3. 为某行填充缺失值

将dataframe中2021-09-07行的缺失值以9来填充

在这里插入图片描述

缺失值判断

pandas提供.isna对缺失值进行判断,若是缺失值返回为True,否则返回False。可以对dataframe所有缺失值进行判断,也可以针对某行或某列做判断

1. 对df所有缺失值进行判断

在这里插入图片描述

2. 对某列缺失值进行判断

针对dataframe中的E列数据做缺失值判断

在这里插入图片描述

3. 对某行缺失值进行判断

选取2021-09-012021-09-03之间的数据进行缺失值判断


欢迎关注微信公众号:数据研发技术,收获各类数据研发技术干货

目录
相关文章
|
4天前
|
数据采集 数据可视化 数据处理
Pandas高级数据处理:数据仪表板制作
《Pandas高级数据处理:数据仪表板制作》涵盖数据清洗、聚合、时间序列处理等技巧,解决常见错误如KeyError和内存溢出。通过多源数据整合、动态数据透视及可视化准备,结合性能优化与最佳实践,助你构建响应快速、数据精准的商业级数据仪表板。适合希望提升数据分析能力的开发者。
57 31
|
5天前
|
数据采集 并行计算 数据可视化
Pandas高级数据处理:数据报告生成实战指南
数据报告生成面临数据质量、计算性能、呈现形式和自动化等核心挑战。常见问题包括缺失值导致统计失真、内存溢出及可视化困难。解决方案涵盖数据清洗、分块处理、安全绘图模板等。通过模块化设计、异常处理机制和性能优化策略,如使用`category`类型、并行计算等,可大幅提升效率。最佳实践建议建立数据质量检查清单、版本控制和自动化测试框架,确保系统具备自适应能力,提升报告生成效率300%以上。
36 12
|
6天前
|
数据可视化 数据挖掘 数据处理
Pandas高级数据处理:交互式数据探索
Pandas 是数据分析中常用的数据处理库,提供了强大的数据结构和操作功能。本文从基础到高级,逐步介绍 Pandas 中交互式数据探索的常见问题及解决方案,涵盖数据读取、检查、清洗、预处理、聚合分组和可视化等内容。通过实例代码,帮助用户解决文件路径错误、编码问题、数据类型不一致、缺失值处理等挑战,提升数据分析效率。
75 32
|
7天前
|
存储 安全 数据处理
Pandas高级数据处理:数据安全与隐私保护
在数据驱动的时代,数据安全和隐私保护至关重要。本文探讨了使用Pandas进行数据分析时如何确保数据的安全性和隐私性,涵盖法律法规要求、用户信任和商业价值等方面。通过加密、脱敏、访问控制和日志审计等技术手段,结合常见问题及解决方案,帮助读者在实际项目中有效保护数据。
52 29
|
8天前
|
存储 安全 数据处理
Pandas高级数据处理:数据加密与解密
本文介绍如何使用Pandas结合加密库(如`cryptography`)实现数据加密与解密,确保敏感信息的安全。涵盖对称和非对称加密算法、常见问题及解决方案,包括密钥管理、性能优化、字符编码和数据完整性验证。通过示例代码展示具体操作,并提供常见报错的解决方法。
47 24
|
10天前
|
存储 算法 数据处理
Pandas高级数据处理:数据压缩与解压
本文介绍 Pandas 中的数据压缩与解压技术,探讨其在大数据集存储、远程传输和备份归档中的应用场景。Pandas 支持多种压缩格式(如 `.gzip`、`.bz2`、`.zip`),通过 `compression` 参数轻松实现数据的压缩与解压。文中还提供了常见问题的解决方案,如文件扩展名不匹配、内存不足和性能优化,并介绍了自动检测压缩格式和组合压缩加密的高级技巧。掌握这些功能可显著提升数据处理效率。
44 20
|
11天前
|
监控 物联网 数据处理
Pandas高级数据处理:数据流式计算
本文介绍了如何使用 Pandas 进行流式数据处理。流式计算能够实时处理不断流入的数据,适用于金融交易、物联网监控等场景。Pandas 虽然主要用于批处理,但通过分块读取文件、增量更新 DataFrame 和使用生成器等方式,也能实现简单的流式计算。文章还详细讨论了内存溢出、数据类型不一致、数据丢失或重复及性能瓶颈等常见问题的解决方案,并建议在处理大规模数据时使用专门的流式计算框架。
136 100
Pandas高级数据处理:数据流式计算
|
12天前
|
数据采集 数据挖掘 物联网
Pandas高级数据处理:实时数据处理
本文介绍了如何使用Pandas进行实时数据处理,涵盖从基础到高级的技巧。Pandas作为Python中流行的数据处理库,提供了高效的DataFrame和Series结构,适用于金融、社交媒体和物联网等领域的数据分析。文章详细讲解了数据读取、清洗、转换及常见问题的解决方案,如内存不足、数据不一致和性能瓶颈,并提供了避免常见报错的方法,帮助读者更高效地处理实时数据。
52 15
|
13天前
|
存储 数据采集 数据挖掘
Pandas高级数据处理:数据流处理
Pandas是Python中高效处理数据分析的流行库。随着数据量增长,传统的批量处理方式难以满足实时性需求,掌握Pandas的数据流处理技术尤为重要。常见问题包括文件格式不兼容、内存不足、缺失值和重复数据等。针对这些问题,可以通过指定参数读取文件、分块读取、填充或删除缺失值、去除重复数据、转换数据类型等方法解决。此外,还需注意KeyError、ValueError和MemoryError等常见报错,并采取相应措施。掌握这些技巧可提高数据处理效率和准确性。
54 26
|
18天前
|
分布式计算 资源调度 大数据
Pandas高级数据处理:分布式计算
随着数据量增长,传统的Pandas单机处理难以应对大规模数据。Dask作为Pandas的补充,支持分布式计算,能处理更大数据集并提高效率。本文介绍Dask在数据加载、类型推断和分区管理中的常见问题及解决方法,如使用`dask.dataframe.read_csv()`、指定`dtype`、调整分区数等,并总结了内存溢出、类型不匹配和网络通信失败等报错的解决方案。
63 25