【学习记录】《DeepLearning.ai》第十三课:特殊应用:人脸识别和神经风格转换(Specialapoplications:Face recognition&Neural style transfer)

简介: 2021/9/13

第十三课:特殊应用:人脸识别和神经风格转换(Specialapoplications:Face recognition&Neural style transfer)

4.1 什么是人脸识别?

科普

人脸识别可能一个人的识别准确率是99%,那么100个人的识别可能需要更高的准确率,99.9%等等。


4.2 One-Shot学习

人脸识别所面临的一个挑战就是需要解决一次学习问题,要想让人脸识别做到一次学习,应该使用Similarity函数,如下图:

image

查看输入的两张图片(img1,img2)的差异性,如果差异性小于一个数,说明相同,差异性大于一个数,说明不相同。

image


4.3 Siamese网络(Siamese network)

image

image

Siamese网络就是首先定义了一个编码函数,对于输入的函数,能够输出一个128维编码,如果两个输入对应的输出的范数比较小,就是同一个人,相反,就是不同的人。


4.4 Triplet损失

定义三元组损失函数然后应用梯度下降

image

image

上面的公式是损失函数,给出3个图片,A、P、N,其中A和P是同一个人,A和N是不同的人,定义损失函数如上,+α​是为了防止损失函数大于0,损失函数的目的是确保损失函数等于0。

只要损失函数小于0,则损失函数就是0.

上面的A、P、N就是三元组。

三元组的选择不能太随意,要选择很难训练的A、P、N。下图是解释:

image


4.5 人脸验证与二分类(Face verification and binary classification)

可以把人脸识别当做二分类问题。

定义输出ˆy如下:

image

image

如果相同输出1,相反输出0

4.6 神经风格迁移(Neural style transfer)

image

不得不说,第二张合成图好阴间。。。

C表示内容图像,S表示风格图像,G表示生成的图像。


4.7 深度卷积网络学习什么?(What are deep ConvNets learning?)

image

网络第一层能检测出一些边缘或颜色阴影等,随着层数的加深,能够检测到更复杂的东西。图中举例的每个方框代表了不同的9个代表性神经元。


4.8 神经风格迁移系统的代价函数

image

神经风格迁移系统的代价函数:

J(G)=αJcontent(C,G)+βJstyle(S,G)

第一个是内容代价函数,第二个是风格代价函数。

前面的系数表示权重

image

上面定义了一个生成图片G的代价函数,并将其最小化。


4.9 内容代价函数(Content cost function)

a[l][C]​和a[l][G]​来代表两个图片C和G的l层的激活函数值。如果两个激活值相似,那么就意味着两个图片的内容相似,因此:

内容代价函数:

Jcontent(C,G)=12||a[l][C]a[l][G]||2

通过超参数α来调整代价函数。


4.10 风格代价函数(Style cost function)

没怎么看懂,给出了一个风格代价函数。


4.11 一维和三维推广

之前讲的卷积都是在2D上讨论的,当然可以以相同的方式来推广到1D和3D空间。


OVER!

目录
打赏
0
0
0
0
146
分享
相关文章
GPT为定制AI应用工程师转型第一周学习计划
本计划帮助开发者快速入门AI领域,首周涵盖AI基础理论、Python编程及PyTorch实战。前两天学习机器学习、深度学习与Transformer核心概念,掌握LLM工作原理。第三至四天快速掌握Python语法与Jupyter使用,完成基础编程任务。第五至七天学习PyTorch,动手训练MNIST手写识别模型,理解Tensor操作与神经网络构建。
68 0
BISHENG下一代企业AI应用的“全能型“LLM软件
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用!
本文通过一个 Agentic RAG 应用的完整构建流程,展示了如何借助 RDS Supabase 快速搭建具备知识处理与智能决策能力的 AI 应用,展示从数据准备到应用部署的全流程,相较于传统开发模式效率大幅提升。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
本文通过一个 Agentic RAG 应用的完整构建流程,展示了如何借助 RDS Supabase 快速搭建具备知识处理与智能决策能力的 AI 应用,展示从数据准备到应用部署的全流程,相较于传统开发模式效率大幅提升。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
AI Agent多模态融合策略研究与实证应用
本文从多模态信息融合的理论基础出发,构建了一个结合图像与文本的AI Agent模型,并通过PyTorch代码实现了完整的图文问答流程。未来,多模态智能体将在医疗、自动驾驶、虚拟助手等领域展现巨大潜力。模型优化的核心是提升不同模态的协同理解与推理能力,从而打造真正“理解世界”的AI Agent。
129 0
AI Agent多模态融合策略研究与实证应用
3个月,200家客户,和大家聊聊企业AI应用(AI Agent)的落地实践
3个月,200家客户,和大家聊聊企业AI应用(AI Agent)的落地实践
3个月,200家客户,和大家聊聊企业AI应用(AI Agent)的落地实践
AI 视觉识别技术在工业园智能安监中的应用实践
本文详解AI安监系统的技术架构、核心算法与工程化方案,展示其如何通过计算机视觉实现全场景风险主动防控。
137 0
AI应用爆发式增长,如何设计一个真正支撑业务的AI系统架构?——解析AI系统架构设计核心要点
本文AI专家三桥君系统阐述了AI系统架构设计的核心原则与关键技术,提出演进式、先进性、松耦合等五大架构法则,强调高并发、高可用等系统质量属性。通过垂直扩展与水平扩展策略实现弹性伸缩,采用多类型数据存储与索引优化提升性能。三桥君介绍了缓存、批处理等性能优化技术,以及熔断隔离等容灾机制,构建全链路监控体系保障系统稳定性。为构建支撑亿级业务的AI系统提供了方法论指导和技术实现路径。
118 0
AI智能体平台,究竟如何成为企业快速构建高效AI应用的‘加速器’?
AI专家三桥君认为AI智能体平台通过低代码设计、智能功能和企业级适配,帮助企业快速构建高效AI应用。平台核心功能包括工具集成、工作流编排、知识管理及多智能体协作。其优势在于降低技术门槛,提升执行效率,支持大规模部署。未来智能体平台将持续优化,成为企业AI转型的核心引擎。
107 0
企业级AI应用需要系统工程支撑,如何通过MCP大模型架构实现全链路实战解构?
本文三桥君深入探讨了MCP大模型架构在企业级AI应用中的全链路实战解构。从事件驱动、统一中台、多端接入、API网关、AI Agent核心引擎等九个核心模块出发,系统阐述了该架构如何实现低耦合高弹性的智能系统构建。AI专家三桥君提出从技术、内容、业务三个维度构建评估体系,为企业级AI应用提供了从架构设计到落地优化的完整解决方案。
109 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问