MySQL 8.0 Server层最新架构详解

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云数据库 RDS SQL Server,基础系列 2核4GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本文基于MySQL 8.0.25源码进行分析和总结。这里MySQL Server层指的是MySQL的优化器、执行器部分。我们对MySQL的理解还建立在5.6和5.7版本的理解之上,更多的是对比PostgreSQL或者传统数据库。然而从MySQL 8.0开始,持续每三个月的迭代和重构工作,使得MySQL Server层的整体架构有了质的飞越。下面来看下MySQL最新的架构。

背景和架构

本文基于MySQL 8.0.25源码进行分析和总结。这里MySQL Server层指的是MySQL的优化器、执行器部分。我们对MySQL的理解还建立在5.6和5.7版本的理解之上,更多的是对比PostgreSQL或者传统数据库。然而从MySQL 8.0开始,持续每三个月的迭代和重构工作,使得MySQL Server层的整体架构有了质的飞越。下面来看下MySQL最新的架构。

image.png

我们可以看到最新的MySQL的分层架构和其他数据库并没有太大的区别,另外值得一提的是从图中可以看出MySQL现在更多的加强InnoDB、NDB集群和RAPID(HeatWave clusters)内存集群架构的演进。下面我们就看下具体细节,我们这次不随着官方的Feature实现和重构顺序进行理解,本文更偏向于从优化器、执行器的流程角度来演进。

MySQL 解析器Parser

首先从Parser开始,官方MySQL 8.0使用Bison进行了重写,生成Parser Tree,同时Parser Tree会contextualize生成MySQL抽象语法树(Abstract Syntax Tree)。

image.png

MySQL抽象语法树和其他数据库有些不同,参考《MySQL 8.0 新的火山模型执行器》文章,是由让比较让人拗口SELECT_LEX_UNIT/SELECT_LEX类交替构成的,然而这两个结构在最新的版本中已经重命名成标准的SELECT_LEX -> Query_block和ELECT_LEX_UNIT -> Query_expression。Query_block是代表查询块,而Query_expression是包含多个查询块的查询表达式,包括UNION AND/OR的查询块(如SELECT * FROM t1 union SELECT * FROM t2)或者有多Level的ORDER BY/LIMIT (如SELECT * FROM t1 ORDER BY a LIMIT 10) ORDER BY b LIMIT 5

例如,来看一个复杂的嵌套查询:

(SELECT *
   FROM ttt1)
UNION ALL
  (SELECT *
   FROM
     (SELECT *
      FROM ttt2) AS a,
     (SELECT *
      FROM ttt3
      UNION ALL SELECT *
      FROM ttt4) AS b)

在MySQL中就可以用下面方式表达:

image.png

经过解析和转换后的语法树仍然建立在Query_block和Query_expression的框架下,只不过有些LEVEL的query block被消除或者合并了,这里不在详细展开。

MySQL prepare/rewrite阶段

接下来我们要经过resolve和transformation过程Query_expression::prepare->Query_block::prepare,这个过程包括(按功能分而非完全按照执行顺序):

Setup and Fix

  • setup_tables : Set up table leaves in the query block based on list of tables.
  • resolve_placeholder_tables/merge_derived/setup_table_function/setup_materialized_derived : Resolve derived table, view or table function references in query block.
  • setup_natural_join_row_types : Compute and store the row types of the top-most NATURAL/USING joins.
  • setup_wild : Expand all '*' in list of expressions with the matching column references.
  • setup_base_ref_items : Set query_block's base_ref_items.
  • setup_fields : Check that all given fields exists and fill struct with current data.
  • setup_conds : Resolve WHERE condition and join conditions
  • setup_group : Resolve and set up the GROUP BY list.
  • m_having_cond->fix_fields : Setup the HAVING clause.
  • resolve_rollup : Resolve items in SELECT list and ORDER BY list for rollup processing
  • resolve_rollup_item : Resolve an item (and its tree) for rollup processing by replacing items matching grouped expressions with Item_rollup_group_items and updating properties (m_nullable, PROP_ROLLUP_FIELD). Also check any GROUPING function for incorrect column.
  • setup_order : Set up the ORDER BY clause.
  • resolve_limits : Resolve OFFSET and LIMIT clauses.
  • Window::setup_windows1: Set up windows after setup_order() and before setup_order_final()
  • setup_order_final: Do final setup of ORDER BY clause, after the query block is fully resolved.
  • setup_ftfuncs : Setup full-text functions after resolving HAVING
  • resolve_rollup_wfs : Replace group by field references inside window functions with references in the presence of ROLLUP.

Transformation

  • remove_redundant_subquery_clause : Permanently remove redundant parts from the query if 1) This is a subquery 2) Not normalizing a view. Removal should take place when a query involving a view is optimized, not when the view is created.
  • remove_base_options: Remove SELECT_DISTINCT options from a query block if can skip distinct
  • resolve_subquery : Resolve predicate involving subquery, perform early unconditional subquery transformations
  • Convert subquery predicate into semi-join, or
  • Mark the subquery for execution using materialization, or
  • Perform IN->EXISTS transformation, or
  • Perform more/less ALL/ANY -> MIN/MAX rewrite
  • Substitute trivial scalar-context subquery with its value
  • transform_scalar_subqueries_to_join_with_derived: Transform eligible scalar subqueries to derived tables.
  • flatten_subqueries : Convert semi-join subquery predicates into semi-join join nests. Convert candidate subquery predicates into semi-join join nests. This transformation is performed once in query lifetime and is irreversible.
  • apply_local_transforms :
  • delete_unused_merged_columns : If query block contains one or more merged derived tables/views, walk through lists of columns in select lists and remove unused columns.
  • simplify_joins : Convert all outer joins to inner joins if possible
  • prune_partitions :Perform partition pruning for a given table and condition.
  • push_conditions_to_derived_tables : Pushing conditions down to derived tables must be done after validity checks of grouped queries done by apply_local_transforms();
  • Window::eliminate_unused_objects: Eliminate unused window definitions, redundant sorts etc.

这里,节省篇幅,我们只举例关注下和top_join_list相关的simple_joins这个函数的作用,对于Query_block中嵌套join的简化过程。

image.png

对比PostgreSQL

为了更清晰的理解标准数据库的做法,我们这里引用了PostgreSQL的这三个过程:

Parser

下图首先Parser把SQL语句生成parse tree。

testdb=# SELECT id, data FROM tbl_a WHERE id < 300 ORDER BY data;

image.png

Analyzer/Analyser

下图展示了PostgreSQL的analyzer/analyser如何将parse tree通过语义分析后生成query tree。

image.png

Rewriter

Rewriter会根据规则系统中的规则把query tree进行转换改写。

sampledb=# CREATE VIEW employees_list 
sampledb-#      AS SELECT e.id, e.name, d.name AS department 
sampledb-#            FROM employees AS e, departments AS d WHERE e.department_id = d.id;

下图的例子就是一个包含view的query tree如何展开成新的query tree。

sampledb=# SELECT * FROM employees_list;

image.png

MySQL Optimize和Planning阶段

接下来我们进入了逻辑计划生成物理计划的过程,本文还是注重于结构的解析,而不去介绍生成的细节,MySQL过去在8.0.22之前,主要依赖的结构就是JOIN和QEP_TAB。JOIN是与之对应的每个Query_block,而QEP_TAB对应的每个Query_block涉及到的具体“表”的顺序、方法和执行计划。然而在8.0.22之后,新的基于Hypergraph的优化器算法成功的抛弃了QEP_TAB结构来表达左深树的执行计划,而直接使用HyperNode/HyperEdge的图来表示执行计划。

image.png

举例可以看到数据结构表达的left deep tree和超图结构表达的bushy tree对应的不同计划展现:

| -> Inner hash join (no condition)  (cost=1.40 rows=1)
    -> Table scan on R4  (cost=0.35 rows=1)
    -> Hash
        -> Inner hash join (no condition)  (cost=1.05 rows=1)
            -> Table scan on R3  (cost=0.35 rows=1)
            -> Hash
                -> Inner hash join (no condition)  (cost=0.70 rows=1)
                    -> Table scan on R2  (cost=0.35 rows=1)
                    -> Hash
                        -> Table scan on R1  (cost=0.35 rows=1)
| -> Nested loop inner join  (cost=0.55..0.55 rows=0)
    -> Nested loop inner join  (cost=0.50..0.50 rows=0)
        -> Table scan on R4  (cost=0.25..0.25 rows=1)
        -> Filter: (R4.c1 = R3.c1)  (cost=0.35..0.35 rows=0)
            -> Table scan on R3  (cost=0.25..0.25 rows=1)
    -> Nested loop inner join  (cost=0.50..0.50 rows=0)
        -> Table scan on R2  (cost=0.25..0.25 rows=1)
        -> Filter: (R2.c1 = R1.c1)  (cost=0.35..0.35 rows=0)
            -> Table scan on R1  (cost=0.25..0.25 rows=1)

MySQL8.0.2x为了更好的兼容两种优化器,引入了新的类AccessPath,可以认为这是MySQL为了解耦执行器和不同优化器抽象出来的Plan Tree。

image.png

老优化器的入口

老优化器仍然走JOIN::optimize来把query block转换成query execution plan (QEP.)

这个阶段仍然做一些逻辑的重写工作,这个阶段的转换可以理解为基于cost-based优化前做准备,详细步骤如下:

  • Logical transformations:
  • optimize_derived : Optimize the query expression representing a derived table/view.
  • optimize_cond : Equality/constant propagation.
  • prune_table_partitions : Partition pruning.
  • optimize_aggregated_query : COUNT(*), MIN(), MAX() constant substitution in case of implicit grouping.
  • substitute_gc : ORDER BY optimization, substitute all expressions in the WHERE condition and ORDER/GROUP lists that match generated columns (GC) expressions with GC fields, if any.
  • Perform cost-based optimization of table order and access path selection.
  • JOIN::make_join_plan() : Set up join order and initial access paths.
  • Post-join order optimization
  • substitute_for_best_equal_field : Create optimal table conditions from the where clause and the join conditions.
  • make_join_query_block : Inject outer-join guarding conditions.
  • Adjust data access methods after determining table condition (several times.)
  • optimize_distinct_group_order : Optimize ORDER BY/DISTINCT.
  • optimize_fts_query : Perform FULLTEXT search before all regular searches.
  • remove_eq_conds : Removes const and eq items. Returns the new item, or nullptr if no condition.
  • replace_index_subquery/create_access_paths_for_index_subquery : See if this subquery can be evaluated with subselect_indexsubquery_engine
  • setup_join_buffering : Check whether join cache could be used
  • Code generation
  • alloc_qep(tables) : Create QEP_TAB array
  • test_skip_sort : Try to optimize away sorting/distinct.
  • make_join_readinfo : Plan refinement stage: do various setup things for the executor
  • make_tmp_tables_info : Setup temporary table usage for grouping and/or sorting.
  • push_to_engines : Push (parts of) the query execution down to the storage engines if they can provide faster execution of the query, or part of it.
  • create_access_paths : generated ACCESS_PATH.

新优化器的入口

新优化器默认不打开,必须通过set optimizer_switch="hypergraph_optimizer=on"; 来打开,其代码流程如下:

FindBestQueryPlan
-> MakeJoinHypergraph 构建hypergraph
  -> MakeRelationalExpressionFromJoinList 基于top_join_list构建operator tree
  ...
  -> MakeJoinGraphFromRelationalExpression 基于operator tree => hypergraph
     目前对non-inner join的约束比较粗暴:
     1. Inner join,且左右子树都只有inner join,只约束SES
     2. Inner join,但子树有非inner join: 将那颗子树整个固定在当前operator下,作为hypernode
     3. 非Inner join,直接把左右子树都固定死,变成2个hypernode
...
-> EnumerateAllConnectedPartitions 开始算法流程 (Solve)
  -> EnumerateComplementsTo 找互补对 (EmitCsg)
     -> FoundSubgraphPair 找到csg-cmp-pair (EmitCsgCmp)
     -> ExpandComplement 扩展互补对 (EnumerateCmpRec)
  -> ExpandSubgraph 扩展连通子图 (EnumerateCsgRec)
辅助函数 FindNeighborhood 获取neighbors

举例看下Plan(AccessPath)和SQL的关系

image.png

最后生成Iterator执行器框架需要的Iterator执行载体,AccessPath和Iterator是一对一的关系(Access paths are a query planning structure that correspond 1:1 to iterators)。

Query_expression::m_root_iterator = CreateIteratorFromAccessPath(......)
unique_ptr_destroy_only<RowIterator> CreateIteratorFromAccessPath(
     THD *thd, AccessPath *path, JOIN *join, bool eligible_for_batch_mode) {
......
   switch (path->type) {
     case AccessPath::TABLE_SCAN: {
       const auto &param = path->table_scan();
       iterator = NewIterator<TableScanIterator>(
           thd, param.table, path->num_output_rows, examined_rows);
       break;
     }
     case AccessPath::INDEX_SCAN: {
       const auto &param = path->index_scan();
       if (param.reverse) {
         iterator = NewIterator<IndexScanIterator<true>>(
             thd, param.table, param.idx, param.use_order, path->num_output_rows,
             examined_rows);
       } else {
         iterator = NewIterator<IndexScanIterator<false>>(
             thd, param.table, param.idx, param.use_order, path->num_output_rows,
             examined_rows);
       }
       break;
     }
     case AccessPath::REF: {
......
}

对比PostgreSQL

testdb=# EXPLAIN SELECT * FROM tbl_a WHERE id < 300 ORDER BY data;
                          QUERY PLAN                           
---------------------------------------------------------------
 Sort  (cost=182.34..183.09 rows=300 width=8)
   Sort Key: data
   ->  Seq Scan on tbl_a  (cost=0.00..170.00 rows=300 width=8)
         Filter: (id < 300)
(4 rows)

image.png

总结

本文主要focus在MySQL最新版本官方的源码上,重点分析了官方的重构在多阶段和各阶段结构上的变化和联系,更多的是为了让大家了解一个全新的MySQL的发展。最后这里贴几张官方youtube介绍的refactor的工作内容。

Refactoring: Separating stages

  • Started ~10 years ago

Finished a few years ago

  • A clear separation between query processing stages
  • Fixed a large number of bugs

Improved stability

  • Faster feature devlopment

Fewer surprises and complications during development

Refactoring: Parsing and preparing

  • Still ongoing

Implemented piece by piece

  • Separating parsing and resolving stages

Elimiating semantic actions that do too much

Get a true bottom-up parser

  • Makes it easier to extend with new SQL syntax

Parsing doesn't have unintented side effects

  • Condistent name and type resolving

Names resolved top-down

Types resolved bottom-up

  • Transformations done in the prepare stage

Bottom-up

Refactoring: Execution

  • Volcano iterator model
  • Possible because stages were separated
  • Done silently in 8.0 oever the last two years
  • Much more modular executor

Common iterator interface for all iterators

Each operation is contained within an iterator

  • Able to put plans together in new ways

Immediate benefix: Remove some instances of teamporary tables

  • Join is just an iterator

Nested loop join is just an interator

Hash join is just another iterator

Your favourite join method is just another iterator

Old vs current executor

Old executor

  • Nested loop focused
  • Hard to extend
  • COde for one operation spread out
  • Different interfaces for each operation
  • Combination of operations hard coded

image.png

New (current) executor

  • Modular
  • Easy to extend
  • Each iterator encapsulates on operation
  • Same interface for all iterators
  • All operations can be connected

image.png

参考资料

《Refactoring Query Processing in MySQL (Norvald H. Ryeng, Oracle)》

《Dynamic Programming Strikes Back - MySQL8.0的新优化器》

《The Internals of PostgreSQL Chapter 3 Query Processing》

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
5月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4月前
|
关系型数据库 MySQL 分布式数据库
Super MySQL|揭秘PolarDB全异步执行架构,高并发场景性能利器
阿里云瑶池旗下的云原生数据库PolarDB MySQL版设计了基于协程的全异步执行架构,实现鉴权、事务提交、锁等待等核心逻辑的异步化执行,这是业界首个真正意义上实现全异步执行架构的MySQL数据库产品,显著提升了PolarDB MySQL的高并发处理能力,其中通用写入性能提升超过70%,长尾延迟降低60%以上。
|
10月前
|
存储 SQL 关系型数据库
MySQL进阶突击系列(03) MySQL架构原理solo九魂17环连问 | 给大厂面试官的一封信
本文介绍了MySQL架构原理、存储引擎和索引的相关知识点,涵盖查询和更新SQL的执行过程、MySQL各组件的作用、存储引擎的类型及特性、索引的建立和使用原则,以及二叉树、平衡二叉树和B树的区别。通过这些内容,帮助读者深入了解MySQL的工作机制,提高数据库管理和优化能力。
|
6月前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
|
9月前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
8月前
|
SQL 存储 缓存
MySQL的架构与SQL语句执行过程
MySQL架构分为Server层和存储引擎层,具有高度灵活性和可扩展性。Server层包括连接器、查询缓存(MySQL 8.0已移除)、分析器、优化器和执行器,负责处理SQL语句;存储引擎层负责数据的存储和读取,常见引擎有InnoDB、MyISAM和Memory。SQL执行过程涉及连接、解析、优化、执行和结果返回等步骤,本文详细讲解了一条SQL语句的完整执行过程。
252 3
|
10月前
|
安全 关系型数据库 MySQL
Windows Server 安装 MySQL 8.0 详细指南
安装 MySQL 需要谨慎,特别注意安全配置和权限管理。根据实际业务需求调整配置,确保数据库的性能和安全。
939 9
|
SQL 缓存 NoSQL
MySQL架构与SQL的执行流程_2
MySQL架构与SQL的执行流程_2
205 0
MySQL架构与SQL的执行流程_2
|
SQL 缓存 网络协议
MySQL架构与SQL的执行流程_1
MySQL架构与SQL的执行流程_1
197 0
MySQL架构与SQL的执行流程_1
|
1月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
71 3

相关产品

  • 云数据库 RDS MySQL 版
  • 推荐镜像

    更多